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Key Sentence:

1. Development of optical lattice clocks with strontium atoms in a cryogenic environment
2. Development of optical lattice clocks with mercury atoms

3. Development of optical lattice clocks with ytterbium atoms

4 . Investigation of the constancy of fundamental constants
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Purpose of Research:

The quest for superb precision in atomic spectroscopy contributed to the birth of quantum
mechanics and the progress of modern physics. Highly precise atomic clocks, which are one of the
outcome of such research, are a key technology that supports our modern society, such as
navigation with GPS and synchronization of high-speed communication networks. In 2001, we
proposed a new atomic clock scheme, the “optical lattice clock,” which should allow us to access the
18-digit-precision in time/frequency in a measurement time of seconds. Armed with such high-
precision atomic clocks, we investigate fundamental physics such as the constancy of fundamental
constants and their coupling to gravity, as well as the application of such clocks to relativistic
geodesy. In parallel, we explore quantum information technology and quantum metrology using
“optical lattice clocks” as platforms to investigate the quantum feedback scheme and quantum
simulator/computation.

1. Development of optical lattice clocks with strontium atoms in cryogenic environment (Takamoto,
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Ushijima, Das, Katori)

The fractional uncertainty of optical lattice clocks based on strontium atoms has reduced to
below 107'® and surpassed the accuracy of Cs clocks, which provide the current definition of the
“second”. At such high level of precision, the blackbody radiation (BBR) shift becomes a dominant
source of uncertainty for strontium optical lattice clocks. To tackle the uncertainty of the BBR shift,
we have developed cryogenic optical lattice clocks where lattice-trapped strontium atoms are
probed inside a cryogenic environment. With a target of 18-digits clock precision, we have built a
pair of clock setups with a cryogenic chamber to allow highly-precise spectroscopy free from the
BBR perturbations (Fig. 1). Frequency difference between the two clocks operating respectively in a
cryogenic and room-temperature environment resolved the BBR shift with high precision. Also, by
comparing two clocks both operating in a cryogenic environment, the relative stability reached
2x 107 in an averaging time of 2 hours and the agreement between the two clocks reached
4x 1078, In fiscal year 2014, we have demonstrated frequency comparisons between such
cryogenic Sr clock with Hg and Yb clocks as described in the following sections.

2. Development of optical lattice clocks with mercury atoms (Ohmae, Yamanaka, Puruttivarasin,
Katori)

Another approach to reduce the uncertainty of BBR shifts is to use the atomic species that have
smaller sensitivity to the BBR. As mercury atoms have an order of magnitude smaller sensitivity to
the BBR than strontium atoms, we have started the development of optical lattice clocks based on
mercury atoms, which may allow achieving 18 digits uncertainty even in a room-temperature
environment. The main challenge for the realization of mercury clocks is the development of laser
sources. As the main transitions of mercury atoms lie in the ultraviolet (UV) region, UV lasers with
high power and stability are necessary for cooling, trapping and spectroscopy. For the development
of stable laser sources in the UV region, laser technologies such as frequency doubling of master
oscillator and power amplifier (MOPA) system and the frequency synthesis with optical frequency
combs are exploited. In fiscal year 2014, we evaluated the uncertainty of the clock below 107¢ and
started the frequency comparison with strontium optical lattice clocks. The frequency comparison
yielded the frequency ratio between Hg and Sr clock transitions with the fractional frequency
uncertainty of 107'® and its reproducibility was confirmed for duration of three months.

3. Development of optical lattice clocks with ytterbium atoms (Nemitz, Ohkubo, Katori)

As ytterbium (Yb) atoms have similar properties to strontium atoms in transition wavelengths,
dipole moments for cooling transition, and the saturated vapor pressure, this allows the realization
of dual optical lattice clocks with Sr and Yb atoms by sharing the vacuum chamber and optics. 171Yb
atoms have a nuclear spin of 1/2, which enables a simple clock operation for future portable clocks.
In fiscal year 2014, we have modified a cryogenic Sr clock to be compatible with a Yb clock and
started its operation. We evaluated the uncertainty of the Yb clock and started the frequency
comparison with a Sr clock using an optical frequency comb.

4. Investigation of the constancy of fundamental constants and relativistic geodesy using optical
lattice clocks (Takamoto, Das, Ushijima, Ohmae, Yamanaka, Puruttivarasin, Nemitz, Ohkubo,
Yamaguchi, Katori)

The foundations of physics and atomic clocks implicitly assume the time and space invariance
of fundamental constants. Among these is the dimensionless quantity known as the fine structure
constant a(= e?/4meyhc). Atomic clocks should keep the same time regardless of their constituent
elements if a is constant, but the constancy of « is still a debatable issue. Precise comparisons of
atomic clocks support such challenges; testing the coupling between electromagnetic constants
(such as a) and gravity and the constancy of the fundamental constants. Through the frequency
comparison of strontium, mercury and ytterbium based optical lattice clocks at 10718 uncertainty,
we plan to explore the constancy of fundamental constants. In fiscal year 2014, we realized the
frequency ratio measurement between Hg and Sr clocks with the fractional frequency uncertainty
of 10716, Further improvement of ratio measurement will provide more stringent limit on the
temporal variation of fundamental constants.
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