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Outline

The aim of us is to understand principles of signal processing carried out by biological systems
in the classes of proteins, protein networks, cells, and cell communities. We are studying
how biomolecules assemble to process the intra- and extra-cellular information and express
flexible higher-order cellular responses. In these studies, we develop and use techniques of
single-molecule measurements, optical microscopy, cell engineering, reconstruction of
biosignaling systems, as well as mathematical analysis and computer simulations of the
reaction networks. The recent main target of us is an intracellular protein reaction network
that called ErbB-RAS-MAPK system. This system is responsible for cell fate decisions
including cell proliferation, differentiation, and apoptosis. We are also studying the PAR
system which is responsible for the formation of cell polarity in embryogenesis and
morphogenesis. In addition, we are investigating functions and dynamics of proteins,
including GPCRs, involved in cell signaling. We are analyzing how diverse dynamics of
reaction systems, which lead to higher-order biological function, emerged from the
accumulations of elemental protein reactions.

1. Single-molecule analysis of information processing in living cells (Abe, Arata, Hiroshima,
Miyagi, Sako, Sato, Umeki, Yoshizawa)
Decision making of biological cells is carried out by intracellular reaction network of
proteins. To understand this process, quantitative measurements of intracellular reactions
followed by theoretical and computational analysis are indispensable.

(1) ErbB-RAS-MAPK system

It has long been known that associations of ligand molecules including EGF induce not only
mutual phosphorylation of ErbBl (EGFR) in its dimers but also higher-order cluster
formation. However, physiological functions of ErbB1 clusters have not yet understood.
We observed movements of ErbB1 receptors fused with GFP in living cells as well as their
molecular clustering and interaction with GRB2 by using single-molecule imaging
(Hiroshima et al. J. Mol. Biol. in press). Our study revealed that the higher-order ErbB1
clusters are the primary sites of signal transduction to Grb2. ErbB1 molecules before EGF
association were solitary confined into small (~200 nm) membrane domains, but EGF
transiently releases the ErB1 confinement to allow molecular clustering (Fig.1). ErbB1
mutates having a defect in dimer formation or phosphorylation could not produce
higher-order clusters. In another study, we found that PHLD1, which inhibits ErbB1
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activation, inhibits ErbB1 clustering and by using mathematical modelling, we suggested
this inhibition by PHLD1 is the reason of its inhibitory function on ErbB1 signaling (Magi
et al. J. Biol. Chem. 293:2206, 2018).

Activation of ErbB induces GDP/GTP exchange on RAS by SOS on the plasma membrane.
SOS has various genetic mutations that cause the Noonan syndrome (NS) disease.
Although SOS function on RAS activation depends on the Cdc2 domain of SOS, NS mutants
are found not only in Cdc25 domain but every other domain of SOS and of which
pathological mechanism is still unclear. We examined behaviors of three different NS
mutants of SOS on the cell surface using single-molecule imaging. M269 mutation in the
acidic lipid-binding H domain increased the membrane association rate constant of SOS
depending on the REM domain, another domain of SOS to interact with RAS-GDP. R552
mutation in the helical linker between DH and REM domains decreased dissociation rate
constant of SOS from the plasma membrane, suggesting an abnormality in the structural
dynamics in the membrane association state. Another mutation R1131 in the G domain,
which associates with Grb2, increased the membrane association rate constants
independent of the other domains. As shown here, single-molecule imaging allows precise
analysis of the action points of individual mutations (Nakamura et al. Sci Rep 7; 14153,
2017).

2. Single-molecule dynamics of cell signaling proteins (Hiroshima, Maeda, Nagamine,
Okamoto, Sako, Sato, Suzuki, Umeki, Yanagawa)
We are examining motional and structural dynamics of cell signaling proteins in
single-molecules to understand structural basis of the complex protein reactions.

(1) Lipid-protein interplay in regulation of ErbB1 dimerization

ErbB1 needs to adopt a specific dimer structure for signal transduction after ligand binding.
We constructed a ten nanometer-scale proteolipid membrane (nanodisc) including the
transmembrane and juxtamembrane (TM-JM) fragments of ErbBl to detect
monomer-dimer transitions at the JM region in single molecules (Fig. 2). Presence of
acidic lipids, including PS and PIP2, increased JM dimer fraction suggesting that
interaction between the acidic head group of the membrane lipids and positively charged
amino acids in JM results in the increase of JM-JM dimerization. JM contains a threonine
residue (T654) which is known to be phosphorylated to decrease ErbB1l activity.
Mechanism of inhibition by this phosphorylation was unknown. In our experiment, the
threonine phosphorylation decreased JM dimer only in the presence of PS in membrane.
These results indicated that lipid-JM interaction and JM-JM interaction are coupled in
regulation of dimeric structure of ErbB1 (Maeda et al. Biophys J 114:893, 2018).

(2) Intracellular structural distribution of RAF

RAF is a cytoplasmic kinase regulated by RAS. RAF has two different conformations (open
and closed). The open form is the active state of RAF, and the open/close dynamics can be
detected from single-pair FRET between two fluorescent proteins conjugated to the two
ends of a single RAF molecule. We improved the FRET probe of RAF to measure the
structure of single RAF molecules in living cells. We are searching for the regulation
mechanism of RAF conformation.

(3) Movements and oligomerization of GPCRs

We are studying the dynamics of trimeric G-protein coupled receptors (GPCRs), which is a
major super family of cell surface receptors. The type III metabolic glutamate receptor
(mGluR3) is a GPCR involved in outbreak of schizophrenia. Based on single-molecule
tracking of mGluR3 tagged with a fluorescent protein on the cell surface, we detected
transition of single mGluR3 particle among four motional modes different in the lateral
diffusion coefficient. Association of an agonist to the receptor increased the fractions of
slower moving states causing a decrease of the lateral diffusion coefficient in average. On
the other hand, association of an antagonist increased the diffusion coefficient. Such
changes in the mobility of mGluR3 were the results of interactions with trimeric G proteins
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and clathrin coated pits (Yanagawa et al. bioRxiv 205161).

3. Molecular mechanism of cell fate decision (Inaba, Sako)

NF-kB is a transcription factor responsible for induction of differentiation in various types
of cells. Responding to the B-cell receptor (BCR) stimulation, NF-kB shows switch-like and
oscillatory dynamics to regulate gene expression for the maturation of immune B-cell.
This process can be analyzed in a B-cell model DT40. To reveal the physiological meaning
of NF-kB dynamics, we are constructing single cell measurement system of NF-xB dynamics
and genome-wide gene expression in DT40. After stimulation of BCR, NF-kB translocated
from the cytoplasm to the nucleus and formed foci in the nucleus. A part of the foci
colocalized with RNA polymerase 11, suggesting that they are the initiation sites of mRNA
transcription. We are constructing a single-cell collection system and trying 3D-FISH for
1dentification of the genes regulated by NF-kB foci.

4. Novel technologies on optical microscopy and their applications (Hiroshima, Okamoto, Sako,
Yamamoto)
In the studies described above, we are developing various technologies of bioimaging and
data processing. This year, we have published two review works summarizing recent
developments of single-molecule imaging technologies (Okamoto et al. Biophys Rev, 2018,
doi: 10.1007/s12551-017-0366-3; Iino et al. Biochem. Biophys. Acta. General Subjects,
1862:241, 2017).

5. Cell biological functions of membrane lipids (Kobayashi, Makino, Murate, Tomishige)
Because the compositions and distributions of lipid species in the biomembrane are
extremely heterogeneous, development of probe molecules for imaging specific lipid species
is highly important to reveal functions of lipids. Recently, we synthesized a novel
photo-switchable lipid analogue N-nitroBIPS-DPPG (Sumi et al. Sci Rep 7:2900, 2017).
This lipid analogue contains a fluorophore moiety NBD conjugated with a photo-sensitive
functional group. By irradiating UV (340 nm) and visible (543 nm) lights alternatingly,
the photo-sensitive group changes its structure reversibly, as the result, the NBD
fluorescence is switched on and off repeatedly. N-nitroBIPS-DPPG will be used for
super-localization microscopy and tracking of lipid dynamics in living cells.
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