

Spontaneous breaking of supersymmetry

Hiroshi Suzuki

Theoretical Physics Laboratory

Nov. 18, 2009 @ Theoretical science colloquium in RIKEN

Hiroshi Suzuki (TPL)

Spontaneous breaking of supersymmetry

Hiroshi Suzuki (TPL)

• • • • • • • • • • • •

• Fermi particle (fermion)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Fermi particle (fermion)

• Bose particle (boson)

- 4 ∃ →

- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
- Bose particle (boson)

- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
- Bose particle (boson)
 - Photon, pion, ⁴He, *W*-boson, *Z*-boson, Higgs particle...

- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
 - Only one particle in a specific quantum state
- Bose particle (boson)
 - Photon, pion, ⁴He, W-boson, Z-boson, Higgs particle...

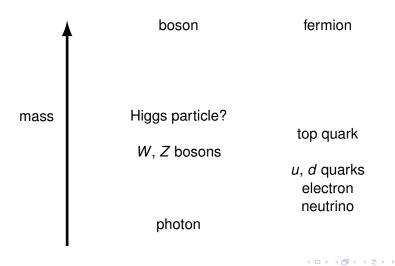
- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
 - Only one particle in a specific quantum state
- Bose particle (boson)
 - Photon, pion, ⁴He, *W*-boson, *Z*-boson, Higgs particle...
 - Any number of particles in a specific quantum state

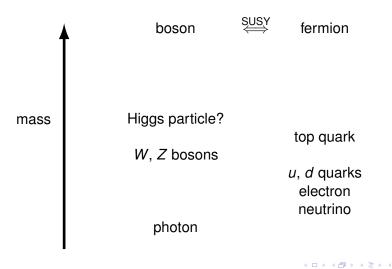
- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
 - Only one particle in a specific quantum state
- Bose particle (boson)
 - Photon, pion, ⁴He, *W*-boson, *Z*-boson, Higgs particle...
 - Any number of particles in a specific quantum state
- They have quite different statistical properties...

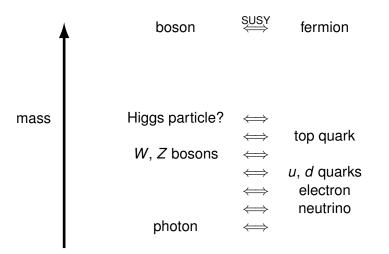
- Fermi particle (fermion)
 - Electron, proton, neutron, ³He, neutrino, quarks...
 - Only one particle in a specific quantum state
- Bose particle (boson)
 - Photon, pion, ⁴He, W-boson, Z-boson, Higgs particle...
 - Any number of particles in a specific quantum state
- They have quite different statistical properties...

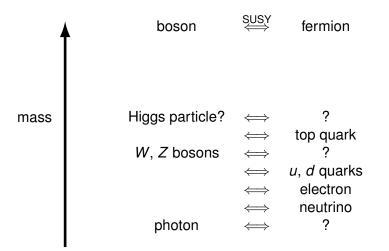
SUperSYmmetry (SUSY) postulates

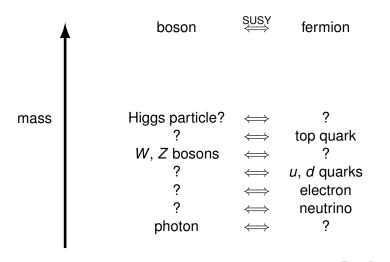
invariance under the "exchange" of these bosons and fermions!

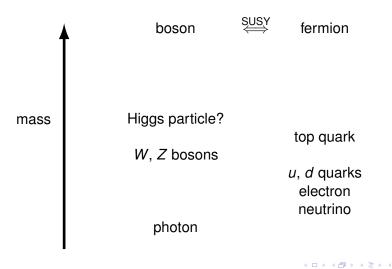


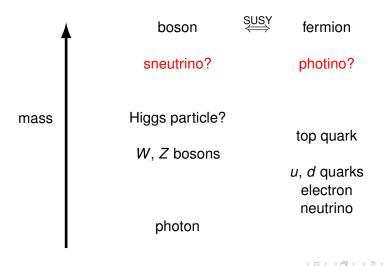


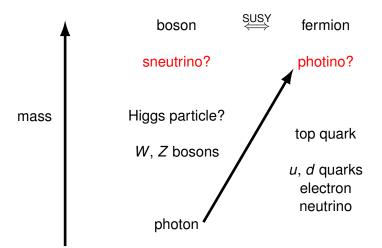




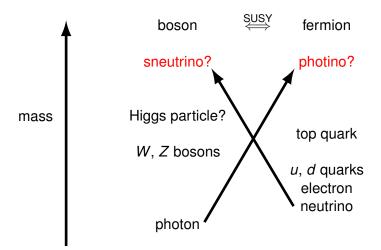








Mass spectrum of elementary particles



- 3 →

 The situation s.t. the mass spectrum does not reflect a symmetry, if the symmetry is spontaneously broken

< 17 ▶

 The situation s.t. the mass spectrum does not reflect a symmetry, if the symmetry is spontaneously broken

Spontaneous symmetry breaking

The lowest energy (quantum) state of the system is not invariant under the symmetry transformation

 The situation s.t. the mass spectrum does not reflect a symmetry, if the symmetry is spontaneously broken

Spontaneous symmetry breaking

The lowest energy (quantum) state of the system is not invariant under the symmetry transformation

• SUSY is spontaneously broken?

 The situation s.t. the mass spectrum does not reflect a symmetry, if the symmetry is spontaneously broken

Spontaneous symmetry breaking

The lowest energy (quantum) state of the system is not invariant under the symmetry transformation

• SUSY is spontaneously broken?

Nambu-Goldstone theorem

When ordinary (continuous) symmetry is spontaneously broken, there emerge massless boson(s)

● Chiral symmetry is spontaneously broken! ⇒ pions

 The situation s.t. the mass spectrum does not reflect a symmetry, if the symmetry is spontaneously broken

Spontaneous symmetry breaking

The lowest energy (quantum) state of the system is not invariant under the symmetry transformation

• SUSY is spontaneously broken?

Nambu-Goldstone theorem

When superemerge massless fermion(s)

● Chiral symmetry is spontaneously broken! ⇒ pions

4 A N

SUSY and Quantum Field Theory (QFT)

 Since SUSY changes the number of fermions (and of bosons) in the system, it is naturally discussed only in the 2nd quantization framework (= the number representation) = Quantum Field Theory (QFT)

.

A D b 4 A b

SUSY and Quantum Field Theory (QFT)

- Since SUSY changes the number of fermions (and of bosons) in the system, it is naturally discussed only in the 2nd quantization framework (= the number representation) = Quantum Field Theory (QFT)
- QFT is quantum mechanics of infinitely many variables (field)

$$\phi(\mathbf{x}, t), \qquad \mathbf{x} \in \mathbb{R}^3, \quad t$$
: time

SUSY and Quantum Field Theory (QFT)

- Since SUSY changes the number of fermions (and of bosons) in the system, it is naturally discussed only in the 2nd quantization framework (= the number representation) = Quantum Field Theory (QFT)
- QFT is quantum mechanics of infinitely many variables (field)

$$\phi(\mathbf{x}, t), \qquad \mathbf{x} \in \mathbb{R}^3, \quad t$$
: time

• This is technically complicated, so let us consider QFT in an artificial space, consisting of a single point

$$\phi(*, t) \equiv q(t),$$
 t: time

This is quantum mechanics of a single degree of freedom...

SUSY Quantum Mechanics (QM)

• Hamiltonian of SUSY QM (obtained by $p \rightarrow -i\hbar \frac{d}{dq}$)

$$H = -rac{\hbar^2}{2}rac{d^2}{dq^2} + rac{1}{2}W'(q)^2 + \hbar W''(q)\left(rac{b^\dagger b}{2} - rac{1}{2}
ight),$$

where the function W(q) is called the super-potential

SUSY Quantum Mechanics (QM)

• Hamiltonian of SUSY QM (obtained by $p \rightarrow -i\hbar \frac{d}{dq}$)

$$H = -rac{\hbar^2}{2}rac{d^2}{dq^2} + rac{1}{2}W'(q)^2 + \hbar W''(q)\left(rac{b^{\dagger}b}{2} - rac{1}{2}
ight),$$

where the function W(q) is called the super-potential

• Schrödinger equation for the wave function (or state) $\Psi(q)$

$$H\Psi(q) = E\Psi(q),$$

where *E* is called the energy eigenvalue and $\Psi(q)$ is the eigenfunction

• Hamiltonian of SUSY QM (obtained by $p \rightarrow -i\hbar \frac{d}{dq}$)

$$H = -rac{\hbar^2}{2}rac{d^2}{dq^2} + rac{1}{2}W'(q)^2 + \hbar W''(q)\left(m{b^\dagger b} - rac{1}{2}
ight),$$

where the function W(q) is called the super-potential

• Schrödinger equation for the wave function (or state) $\Psi(q)$

$$H\Psi(q) = E\Psi(q),$$

where *E* is called the energy eigenvalue and $\Psi(q)$ is the eigenfunction

• Among *E*, the smallest *E* ($\equiv E_0$), the ground state energy will be very important in what follows

Creation and annihilation operators of a fermion

• b^{\dagger} and b obey the relations

$$bb^{\dagger} + b^{\dagger}b = 1,$$
 $(b^{\dagger})^2 = b^2 = 0$

and, from these,

Creation and annihilation operators of a fermion

• b^{\dagger} and *b* obey the relations

$$bb^{\dagger} + b^{\dagger}b = 1,$$
 $(b^{\dagger})^2 = b^2 = 0$

and, from these,

$$\begin{array}{c} 0 & \stackrel{b^{\dagger}}{\longrightarrow} \langle 1 | \stackrel{b^{\dagger}}{\longleftarrow} \langle 0 | \\ 0 & \stackrel{b}{\longleftarrow} \langle 0 | \stackrel{b}{\longleftarrow} \langle 0 | \end{array}$$

• These can be represented in terms of a "two-story" notation

$$|0
angle \Leftrightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$
 bosonic, $|1
angle \Leftrightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$ fermionic

and 2 \times 2 matrices

$$b \Leftrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad b^{\dagger} \Leftrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

SUSY QM

• In this two-story notation,

$$H = \left(-\frac{\hbar^2}{2} \frac{d^2}{dq^2} + \frac{1}{2} W'(q)^2 \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\hbar}{2} W''(q) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

SUSY QM

• In this two-story notation,

$$H = \left(-\frac{\hbar^2}{2} \frac{d^2}{dq^2} + \frac{1}{2} W'(q)^2 \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\hbar}{2} W''(q) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Now, the fundamental relation in SUSY QM is

$H = Q^2$

where Q is an (hermitian) operator called the super-charge

$$Q = \frac{1}{\sqrt{2}} \left[-i\hbar \frac{d}{dq} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + W'(q) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right]$$

SUSY QM

• In this two-story notation,

$$H = \left(-\frac{\hbar^2}{2} \frac{d^2}{dq^2} + \frac{1}{2} W'(q)^2 \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\hbar}{2} W''(q) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Now, the fundamental relation in SUSY QM is

$H = Q^2$

where Q is an (hermitian) operator called the super-charge

$$Q = \frac{1}{\sqrt{2}} \left[-i\hbar \frac{d}{dq} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + W'(q) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right]$$

The supercharge maps the boson into the fermion and vice versa

$$Q\begin{pmatrix}0*\end{pmatrix}=\begin{pmatrix}*\\0\end{pmatrix},\qquad Q\begin{pmatrix}*\\0\end{pmatrix}=\begin{pmatrix}0*\end{pmatrix}$$

and generates SUSY transformation

Basic property of SUSY QM (I)

Since

$$H = Q^2$$
,

the energy eigenvalue E

$$H\Psi(q) = Q^2\Psi(q) = E\Psi(q)$$

is positive or zero

 $E \ge 0$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Since

$$H = Q^2$$
,

the energy eigenvalue E

$$H\Psi(q)=Q^2\Psi(q)=E\Psi(q)$$

is positive or zero

 $E \ge 0$

• The zero-energy E = 0 is very special, because

$$E=0
ightarrow Q^2\Psi(q)=0
ightarrow Q\Psi(q)=0$$

Zero-energy state is always annihilated by the supercharge

- **→ → →**

Since

$$H = Q^2$$
,

the energy eigenvalue E

$$H\Psi(q)=Q^2\Psi(q)=E\Psi(q)$$

is positive or zero

 $E \ge 0$

• The zero-energy E = 0 is very special, because

$$E=0
ightarrow Q^2\Psi(q)=0
ightarrow Q\Psi(q)=0$$

Zero-energy state is always annihilated by the supercharge
Zero-energy state is always invariant under SUSY transformation

• For any positive energy eigenvalue E > 0

$$H\Psi(q) = E\Psi(q), \qquad E > 0,$$

one may always apply Q to produce another state $\Phi(q)$

 $\Phi(q)=Q\Psi(q)$

that has the identical energy *E* (recall $H = Q^2$)

$$H\Phi(q) = HQ\Psi(q) = QH\Psi(q) = QE\Psi(q) = E\Phi(q), \qquad E > 0$$

< 同 > < ∃ >

• For any positive energy eigenvalue E > 0

$$H\Psi(q) = E\Psi(q), \qquad E > 0,$$

one may always apply Q to produce another state $\Phi(q)$

 $\Phi(q)=Q\Psi(q)$

that has the identical energy *E* (recall $H = Q^2$)

$$H\Phi(q)=HQ\Psi(q)=QH\Psi(q)=QE\Psi(q)=E\Phi(q),\qquad E>0$$

• All *E* > 0 states consist of pairs of bosonic and fermionic states!

• For any positive energy eigenvalue E > 0

$$H\Psi(q) = E\Psi(q), \qquad E > 0,$$

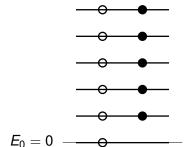
one may always apply Q to produce another state $\Phi(q)$

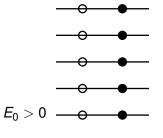
 $\Phi(q) = Q\Psi(q)$

that has the identical energy *E* (recall $H = Q^2$)

$$H\Phi(q) = HQ\Psi(q) = QH\Psi(q) = QE\Psi(q) = E\Phi(q), \qquad E > 0$$

All *E* > 0 states consist of pairs of bosonic and fermionic states!
N.B. The pairing is impossible for *E* = 0 because *Q*Ψ(*q*) = 0





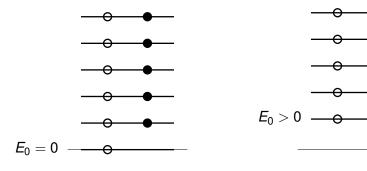
Hiroshi Suzuki (TPL)

Spontaneous breaking of supersymmetry

Nov. 18, 2009 11/29

æ

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



 $Q\Psi_0(q)=0$

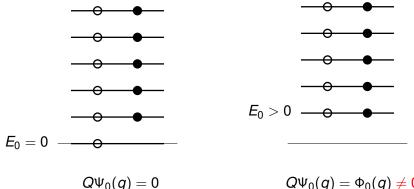
Hiroshi Suzuki (TPL)

Spontaneous breaking of supersymmetry

Nov. 18, 2009 11 / 29

æ

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



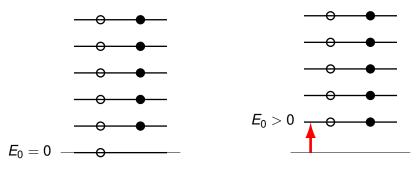
 $Q\Psi_0(q) = \Phi_0(q) \neq 0$

イロト イヨト イヨト イヨト

Nov. 18, 2009 11/29

3

SUSY is spontaneously broken!



 $Q\Psi_0(q)=0$

 $Q\Psi_0(q) = \Phi_0(q) \neq \mathbf{0}$

Nov. 18, 2009 11 / 29

- (E

э

Zero-energy E = 0 state in SUSY QM

• Zero-energy E = 0 state satisfies the 1st order differential eq. $Q\Psi(q) = -\frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{bmatrix} \frac{d}{dq} + \frac{1}{\hbar}W'(q) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \Psi(q) = 0$

< 🗇 🕨 < 🖃 🕨

3

Zero-energy E = 0 state in SUSY QM

• Zero-energy E = 0 state satisfies the 1st order differential eq.

$$Q\Psi(q) = -\frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \left[\frac{d}{dq} + \frac{1}{\hbar} W'(q) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right] \Psi(q) = 0$$

The solution is

4 A N

Zero-energy E = 0 state in SUSY QM

• Zero-energy E = 0 state satisfies the 1st order differential eq.

$$Q\Psi(q) = -\frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \left[\frac{d}{dq} + \frac{1}{\hbar} W'(q) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right] \Psi(q) = 0$$

The solution is

$$\Psi(q) \propto egin{pmatrix} \exp\left(+rac{1}{\hbar} \mathcal{W}(q)
ight) \ 0 \ \end{bmatrix} \quad ext{or} \quad \Psi(q) \propto egin{pmatrix} 0 \ \exp\left(-rac{1}{\hbar} \mathcal{W}(q)
ight) \end{pmatrix}$$

The solution, however, must be normalizable

$$\int_{-\infty}^{\infty} dq \, \Psi(q)^{\dagger} \Psi(q) < \infty$$

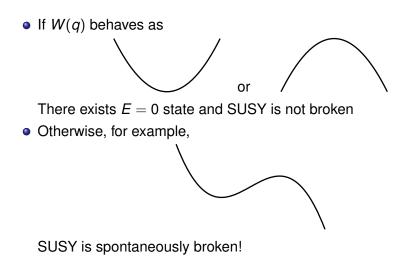
This requires

$$W(q)
ightarrow +\infty$$
 for $q
ightarrow \pm\infty$

 $W(q) \rightarrow -\infty$ for $q \rightarrow \pm \infty$

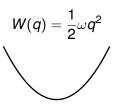
or

Asymptotic behavior of W(q) determines which...

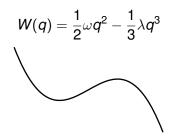


Let us consider two examples

Model I



Model II

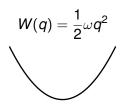


э

< 同 > < ∃ >

Let us consider two examples

Model I



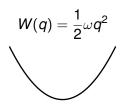
SUSY will not be spontaneously broken

Model II

$$W(q) = \frac{1}{2}\omega q^2 - \frac{1}{3}\lambda q^3$$

Let us consider two examples

Model I



SUSY will not be spontaneously broken

Model II

$$W(q) = \frac{1}{2}\omega q^2 - \frac{1}{3}\lambda q^3$$

SUSY will be spontaneously broken

Hiroshi Suzuki (TPL)

Spontaneous breaking of supersymmetry

Nov. 18, 2009 14 / 29

The ground state in model I

The Hamiltonian

$$H = \left(-\frac{\hbar^2}{2}\frac{d^2}{dq^2} + \frac{1}{2}\omega^2 q^2\right) \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix} + \frac{1}{2}\hbar\omega \begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}$$

represents two independent harmonic oscillators with shifted zero-point energies $\pm (1/2)\hbar\omega$: Exactly solvable

The unique ground state

$$\Psi_0(q) = egin{pmatrix} 0 \ \left(rac{\omega}{\pi\hbar}
ight)^{1/4} \exp\left(-rac{\omega}{2\hbar} q^2
ight) \end{pmatrix}$$

has the energy

$$E_0 = rac{1}{2}\hbar\omega - rac{1}{2}\hbar\omega = 0$$

and is annihilated by the supercharge

$$Q\Psi_0(q)=0$$

• The first excited states

$$\Psi_1(q) = egin{pmatrix} 0 \ \left(rac{4\omega^3}{\pi\hbar^3}
ight)^{1/4} q \, \exp\left(-rac{\omega}{2\hbar}q^2
ight) \end{pmatrix} \propto Q \Phi_1(q) \qquad ext{bosonic}$$

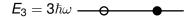
and

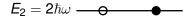
$$\Phi_1(q) = egin{pmatrix} \left(\left(rac{\omega}{\pi \hbar}
ight)^{1/4} \exp\left(- rac{\omega}{2 \hbar} q^2
ight) \\ 0 \end{pmatrix} \propto Q \Psi_1(q) \qquad ext{fermionic}$$

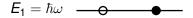
have the degenerate energies

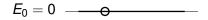
$$E_{1} = \frac{3}{2}\hbar\omega - \frac{1}{2}\hbar\omega = \hbar\omega$$
$$E_{1} = \frac{1}{2}\hbar\omega + \frac{1}{2}\hbar\omega = \hbar\omega$$

Spectrum in model I



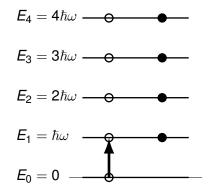






◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

Spectrum in model I



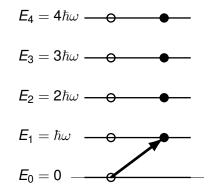
• The excitation energy from the ground state to the first excited bosonic state is $\hbar\omega$

Hiroshi Suzuki (TPL)

Nov. 18, 2009 17 / 29

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spectrum in model I



- The excitation energy from the ground state to the first excited bosonic state is $\hbar\omega$
- The excitation energy from the ground state to the first excited fermionic state is $\hbar\omega$

Hiroshi Suzuki (TPL)

Nov. 18, 2009 17 / 29

Model II in the perturbation theory

Model II

$$\begin{aligned} H &= \left[-\frac{\hbar^2}{2} \frac{d^2}{dq^2} + \frac{1}{2} \omega^2 q^2 \left(1 - \frac{\lambda}{\omega} q \right)^2 \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &+ \left(\frac{1}{2} \hbar \omega - \hbar \lambda q \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{aligned}$$

is not exactly solvable for $\lambda \neq 0$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model II in the perturbation theory

Model II

$$H = \begin{bmatrix} -\frac{\hbar^2}{2} \frac{d^2}{dq^2} + \frac{1}{2} \omega^2 q^2 \left(1 - \frac{\lambda}{\omega} q\right)^2 \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ + \left(\frac{1}{2} \hbar \omega - \hbar \lambda q\right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

is not exactly solvable for $\lambda \neq \mathbf{0}$

Perturbation theory

$$H=H_0+H'$$

where

$$\begin{aligned} \mathcal{H}_{0} &= \left(-\frac{\hbar^{2}}{2} \frac{d^{2}}{dq^{2}} + \frac{1}{2} \omega^{2} q^{2} \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} \hbar \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & \Leftarrow \text{ Model I} \\ \mathcal{H}' &= \left(-\lambda \omega q^{3} + \frac{1}{2} \lambda^{2} q^{4} \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \hbar \lambda q \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{aligned}$$

4 A N

$$E_0^{(0)} = \frac{1}{2}\hbar\omega - \frac{1}{2}\hbar\omega = 0$$

Nov. 18, 2009 19 / 29

2

イロト イヨト イヨト イヨト

At O(λ⁰),

$$E_0^{(0)} = \frac{1}{2}\hbar\omega - \frac{1}{2}\hbar\omega = 0$$

• No $O(\lambda)$ term because of the reflection symmetry $\lambda \to -\lambda$, $q \to -q$

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

At O(λ⁰),

$$E_0^{(0)} = \frac{1}{2}\hbar\omega - \frac{1}{2}\hbar\omega = 0$$

No O(λ) term because of the reflection symmetry λ → −λ, q → -q
At O(λ²):

$$\int_{-\infty}^{\infty} dq \,\Psi_0^{(0)}(q)^{\dagger} H' \Psi_0^{(0)}(q) = \frac{3\hbar^2}{8\omega^2} \lambda^2$$
$$\sum_{n>0} \frac{\left| \int_{-\infty}^{\infty} dq \,\Psi_0^{(0)}(q)^{\dagger} H' \Psi_n^{(0)}(q) \right|^2}{E_0^{(0)} - E_n^{(0)}} = -\frac{3\hbar^2}{8\omega^2} \lambda^2 + O(\lambda^4)$$

and

$$E_0^{(2)} = \frac{3\hbar^2}{8\omega^2}\lambda^2 - \frac{3\hbar^2}{8\omega^2}\lambda^2 = 0$$

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

At O(λ⁰),

$$E_0^{(0)} = \frac{1}{2}\hbar\omega - \frac{1}{2}\hbar\omega = 0$$

No O(λ) term because of the reflection symmetry λ → −λ, q → -q
At O(λ²):

$$\int_{-\infty}^{\infty} dq \,\Psi_0^{(0)}(q)^{\dagger} H' \Psi_0^{(0)}(q) = \frac{3\hbar^2}{8\omega^2} \lambda^2$$
$$\sum_{n>0} \frac{\left| \int_{-\infty}^{\infty} dq \,\Psi_0^{(0)}(q)^{\dagger} H' \Psi_n^{(0)}(q) \right|^2}{E_0^{(0)} - E_n^{(0)}} = -\frac{3\hbar^2}{8\omega^2} \lambda^2 + O(\lambda^4)$$

and

$$E_0^{(2)} = \frac{3\hbar^2}{8\omega^2}\lambda^2 - \frac{3\hbar^2}{8\omega^2}\lambda^2 = 0$$

Is this just a coincidence?

Non-renormalization theorem

 $E_0 = 0$ persists in all orders of power-series expansion w.r.t. λ

< 17 ▶

Non-renormalization theorem

 $E_0 = 0$ persists in all orders of power-series expansion w.r.t. λ

• Proof: The would-be E = 0 wave function

$$\exp\left(-\frac{1}{\hbar}W(q)
ight) = \exp\left[-\frac{1}{\hbar}\left(\frac{1}{2}\omega q^2 - \frac{1}{3}\lambda q^3
ight)
ight]$$

is normalizable to all orders of the power-series expansion to ${\cal O}(\lambda^N)$

$$\exp\left(-\frac{1}{\hbar}W(q)
ight)\simeq\exp\left(-\frac{\omega}{2\hbar}q^{2}
ight)\sum_{n=0}^{N}\frac{1}{n!}\left(rac{\lambda}{3\hbar}q^{3}
ight)^{n}.$$

QED

Non-renormalization theorem

 $E_0 = 0$ persists in all orders of power-series expansion w.r.t. λ

• Proof: The would-be E = 0 wave function

$$\exp\left(-rac{1}{\hbar}W(q)
ight)=\exp\left[-rac{1}{\hbar}\left(rac{1}{2}\omega q^2-rac{1}{3}\lambda q^3
ight)
ight]$$

is normalizable to all orders of the power-series expansion to ${\cal O}(\lambda^N)$

$$\exp\left(-rac{1}{\hbar}W(q)
ight)\simeq \exp\left(-rac{\omega}{2\hbar}q^2
ight)\sum_{n=0}^{N}rac{1}{n!}\left(rac{\lambda}{3\hbar}q^3
ight)^n$$

Q.E.D.

• Spontaneous SUSY breaking in this system cannot be seen by perturbation theory!

Hiroshi Suzuki (TPL)

Nov. 18, 2009 20 / 29

• More generally, for any superpotential W(q),

Non-renormalization theorem

If $E_0 = 0$ in the classical theory (i.e., when $\hbar = 0$), then $E_0 = 0$ remains in all orders of perturbation theory

• More generally, for any superpotential W(q),

Non-renormalization theorem

If $E_0 = 0$ in the classical theory (i.e., when $\hbar = 0$), then $E_0 = 0$ remains in all orders of perturbation theory

• Proof: Almost the same as above

• More generally, for any superpotential W(q),

Non-renormalization theorem

If $E_0 = 0$ in the classical theory (i.e., when $\hbar = 0$), then $E_0 = 0$ remains in all orders of perturbation theory

- Proof: Almost the same as above
- SUSY theories typically exhibit this sort of remarkable stability under perturbative (or radiative) corrections

• More generally, for any superpotential W(q),

Non-renormalization theorem

If $E_0 = 0$ in the classical theory (i.e., when $\hbar = 0$), then $E_0 = 0$ remains in all orders of perturbation theory

- Proof: Almost the same as above
- SUSY theories typically exhibit this sort of remarkable stability under perturbative (or radiative) corrections
- Such stability results from the cancellation between the contribution from bosons and fermions

Semi-classical (or WKB, or instanton) approximation yields

$${\sf E}_0 \simeq rac{\hbar \omega}{2\pi} \exp\left(-rac{2}{\hbar}rac{\omega^3}{6\lambda^2}
ight) > 0$$

< 🗇 🕨 < 🖃 >

Semi-classical (or WKB, or instanton) approximation yields

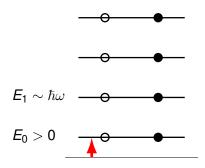
$$\begin{split} E_0 &\simeq \frac{\hbar\omega}{2\pi} \exp\left(-\frac{2}{\hbar} \frac{\omega^3}{6\lambda^2}\right) > 0 \\ &= 0 + 0\lambda^2 + 0\lambda^4 + 0\lambda^6 + \cdots \end{split}$$

Semi-classical (or WKB, or instanton) approximation yields

$$egin{split} \mathsf{E}_0 &\simeq rac{\hbar\omega}{2\pi} \exp\left(-rac{2}{\hbar}rac{\omega^3}{6\lambda^2}
ight) > 0 \ &= 0 + 0\lambda^2 + 0\lambda^4 + 0\lambda^6 + \cdots \end{split}$$

 Spontaneous SUSY breaking in this system is a purely non-perturbative phenomenon!

Spectrum in model II



Hiroshi Suzuki (TPL)

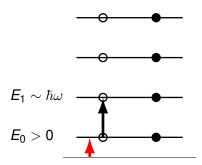
Spontaneous breaking of supersymmetry

Nov. 18, 2009 23 / 29

Э.

イロト イヨト イヨト イヨト

Spectrum in model II

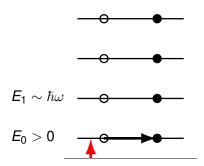


• The excitation energy from the ground state to the first excited bosonic state is $\sim \hbar \omega$

Hiroshi Suzuki (TPL)

Nov. 18, 2009 23 / 29

Spectrum in model II



- The excitation energy from the ground state to the first excited bosonic state is $\sim \hbar \omega$
- There is no excitation energy from the ground state to another fermionic ground state! = Nambu-Goldstone theorem

Hiroshi Suzuki (TPL)

Nov. 18, 2009 23 / 29

Dictionary

SUSY QM

SUSY QFT

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3

Dictionary

ground state \Rightarrow vacuum

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dictionary

SUSY QM	SUSY QFT
---------	----------

ground state \Rightarrow vacuum

ground state energy E_0

 $\Rightarrow \quad \text{vacuum energy density } \mathcal{E}_0$

4 A N

Dictionary

SUSY QM

SUSY QFT

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken

⇒ vacuum

- \Rightarrow vacuum energy density \mathcal{E}_0
- \Rightarrow if $\mathcal{E}_0 > 0$, SUSY broken

Dictionary

SUSY QM

SUSY QFT

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken excitation energy

vacuum

- \Rightarrow vacuum energy density \mathcal{E}_0
- $\Rightarrow \quad \ \ \text{if $\mathcal{E}_0>0$, SUSY broken$}$

$$\Rightarrow$$
 particle mass ($E = mc^2$)

Dictionary

SUSY QM

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken excitation energy Nambu-Goldstone theorem SUSY QFT

vacuum

- \Rightarrow vacuum energy density \mathcal{E}_0
- $\Rightarrow \quad \ \ \text{if $\mathcal{E}_0>0$, SUSY broken$}$
- \Rightarrow particle mass ($E = mc^2$)
- \Rightarrow Nambu-Goldstone theorem

Dictionary

SUSY QM

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken excitation energy Nambu-Goldstone theorem

SUSY QFT

vacuum

- \Rightarrow vacuum energy density \mathcal{E}_0
- $\Rightarrow \quad \ \ \text{if } \mathcal{E}_0 > 0, \, \text{SUSY broken}$
- \Rightarrow particle mass ($E = mc^2$)
- \Rightarrow Nambu-Goldstone theorem

and

non-renormalization theorem \Rightarrow non-renormalization theorem

Dictionary

SUSY QM

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken excitation energy Nambu-Goldstone theorem

SUSY QFT

vacuum

- $\Rightarrow \quad \text{vacuum energy density } \mathcal{E}_0$
- $\Rightarrow \quad \ \ \text{if $\mathcal{E}_0>0$, SUSY broken$}$
- \Rightarrow particle mass ($E = mc^2$)
- \Rightarrow Nambu-Goldstone theorem

and

non-renormalization theorem \Rightarrow non-renormalization theorem

 \Rightarrow

 The cancellation between bosons and fermions makes the divergence of the mass of the Higgs particle quite moderate

Dictionary

SUSY QM

ground state ground state energy E_0 if $E_0 > 0$, SUSY broken excitation energy Nambu-Goldstone theorem

SUSY QFT

vacuum

- $\Rightarrow \quad \text{vacuum energy density } \mathcal{E}_0$
- $\Rightarrow \quad \ \ \text{if $\mathcal{E}_0>0$, SUSY broken$}$
- \Rightarrow particle mass ($E = mc^2$)
- \Rightarrow Nambu-Goldstone theorem

and

non-renormalization theorem \Rightarrow non-renormalization theorem

- The cancellation between bosons and fermions makes the divergence of the mass of the Higgs particle quite moderate
- Consistency of string theory requires SUSY

Large Hadron Collider (LHC)

• To find evidence of SUSY is one of the main objectives...

 Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

• Why? Because the equation is very complicated?

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

• Why? Because the equation is very complicated?

No

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

• Why? Because the equation is very complicated?

No

• Then why?

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

• Why? Because the equation is very complicated?

No

• Then why?

We do not know the equation, beyond the perturbation theory!

- Just as in SUSY QM, the spontaneous SUSY breaking can occur in SUSY QFT and it can be a non-perturbative phenomenon
- Then can we compute such non-perturbative phenomena in SUSY QFT from first principles?

No

• Why? Because the equation is very complicated?

No

• Then why?

We do not know the equation, beyond the perturbation theory!

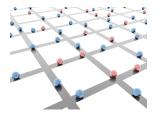
We only have

perturbation theory + consistency arguments

Non-perturbative definition by the lattice

1

QFT is quantum mechanics of infinitely many variables (field)

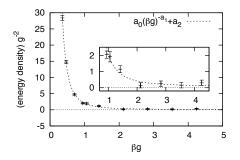


This discretization however breaks SUSY...

Only quite recently... (I. Kanamori, PRD 79 (2009))

• Vacuum energy density \mathcal{E}_0 of a certain SUSY QFT (SUSY Yang-Mills theory) defined in one-dimensional space

$${\cal E}_0/g^2 = 0.09 \pm 0.09({
m sys})^{+0.10}_{-0.08}({
m stat})$$



 it appears that the spontaneous SUSY breaking in this system is unlikely...

Hiroshi Suzuki (TPL)

- SUSY is a very interesting possibility, but it must be spontaneously broken to be true in the real world
- To study nonperturbative spontaneous breaking of SUSY from first principles, we need a non-perturbative formulation of SUSY QFT
- This is not yet available, although we had recently a promising success at least partially