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Introduction

The fine structure constant

α =
e2

2ǫ0hc

is a dimensionless fundamental constant of physics:

e = electric charge of electron,
ǫ0 = dielectric constant of vacuum,
h = Planck constant,
c = velocity of light in vacuum.

Since α is basically measure of magnitude of e, it can be measured by
any physical system involving electron directly or indirectly.
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Some high precision measurements of α:
Mohr,Taylor,Newell, RMP 80, 633 (2008)

α−1(ac Josephson) = 137.035 987 5 (43) [31 ppb]

α−1(quantum Hall) = 137.036 003 0 (25) [18 ppb]

α−1(neutron wavelength) = 137.036 007 7 (28) [21 ppb]

α−1(atom interferometry) = 137.036 000 0 (11) [7.7 ppb]

α−1(optical lattice) = 137.035 998 83 (91) [6.7 ppb]
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However, by far the most accurate α comes from the measurement of
electron anomalous magnetic moment ae and the theoretical calculation
in quantum electrodynamics (QED) and Standard Model (SM):

α−1(ae) = 137.035 999 085 (12)(37)(33) [0.37 ppb]

where 12,37,33 are the uncertainties of 8th-order term, estimated
10th-order term, and measurement of ae.
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Figure: Comparison of various α
−1 of high precision.
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Figure: Magnification of the lower half of the last figure by factor 10.

α(ae[HV08]) is 18 times more accurate than α(Rb).
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Brief review of QED

I will discuss how such precise α is obtained from ae, and possible
implication on quantum mechanics (including QED and SM).

Of course quantum mechanics is the basis of our understanding of
material world and the foundation of many modern technologies.

Heisenberg, Z. Physik 33, 879 (1925)
Schrödinger, Ann. der Phys. 81, 109 (1926)

However, it was known from the beginning that it is applicable only to
slowly moving particle, slow compared with the velocity of light c.

One way to remove this restriction was found by Dirac who discovered an
equation, Dirac equation, which works at any velocity.

Dirac, Proc. Roy. Soc. (London) A117, 610 (1928)
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Among many successes of Dirac equation is the prediction that
gyromagnetic ratio g of electron is equal to 2, which agreed with
measurement.

However, Dirac eq. had puzzling feature that it appeared to predict
presence of negative energy states.

It turned out that these states can be interpreted as positive energy states
of positron (which has same mass but opposite charge to electron).

This interpretation was justified experimentally by the discovery of
positron in cosmic ray experiment.

Anderson, Phys. Rev. 41, 405 (1932).

Formally this is equivalent to treating electron and positron as operators
of quantized Dirac field.
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By 1929 relativistic quantum field theory (QED), which describes the
interaction of electron field and electromagnetic field, was formulated.

Heisenberg, Pauli, Z. Physik, 56, 1 (1929)
Dirac, Proc. Roy. Soc. (London) A136, 453 (1932)

Calculation in 2nd order perturbation of QED for processes such as
Compton scattering (Klein-Nishina formula), Bremsstrahlung, and atomic
energy levels, agreed with experiments within few percents.

However, when one tried to improve theory by including higher order
effects, one ran into strange situation that result becomes infinitely large.

QED was thus regarded as seriously sick for many years.

(In 1939 Kramers was telling people that the divergence problem might
be solved by "renormalization". But he had no idea how to work it out.).
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The key to solution was provided in 1947 by two experiments which
showed that predictions of Dirac eq. require tiny but non-vanishing
corrections, thanks to much improved measurement precision due to
advances in microwave technology.

One is Lamb shift of hydrogen atom:
2S1/2 level is about 1050 MHz higher than 2P1/2 level, whereas Dirac eq.
predicts that they are at the same level (i.e., degenerate).

Lamb, Retherford, Phys. Rev. 72, 241 (1947)

The other is Zeeman splitting of Ga atom which showed that g-factor of
the electron is about 0.1 % larger than the prediction of Dirac eq., i.e.,
electron has anomalous magnetic moment:

ae ≡ (g − 2)/2 = 0.001 15 (4).

Kusch, Foley, PR 72, 1256 (1947)
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These experiments forced people to realize that, mass and charge
parameters of QED must be reinterpreted as observed mass and charge
minus their radiative corrections.

When QED is thus renormalized, these divergences disappear from
calculated physical processes.

Bethe applied this idea within nonrelativistic framework and obtained the
Lamb shift in rough agreement with measurement.

Bethe, Phys. Rev. 72, 339 (1947).

For unambiguous treatment of renormalization, however, it is necessary
to have relativistic formulation.

Note: Relation of energy and mass is not fixed without relativity.
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Such relativistic formulation was being developed by Tomonaga and
Schwinger, unknown to each other.

Tomonaga, RIKEN-IHO 22, 545 (1943) in Japanese; Prog. Theor. Phys. 1, 27 (1946)
Koba, Tomonaga, Prog. Theor. Phys. 2, 218 (1947)

Schwinger, Phys. Rev. 73, 416 (1948); 74, 1439 (1948); 75, 651 (1949); 76, 790 (1949)

Schwinger applied it to ae and obtained

ae =
α

2π
= 0.001 161 . . . .

in excellent agreement with the measurement.
Schwinger, PR 73, 416L (1948); PR 75, 898 (1949)

Together with Bethe’s work on the Lamb shift, this provided firm
experimental support for renormalized QED.

T. Kinoshita () 12 / 57



Over 60 years since then, precision of g − 2 measurement has been
improved by eight orders of magnitude (spin precession, Penning trap).

Theory has also been improved by similar order of magnitude.

Latest innovations and improvements of the Penning trap method by
Gabrielse’s groupt at Harvard led to the precision of 0.24 parts per billion:

ae(exp) = 1 159 652 180.73 (0.28) × 10−12 [0.24 ppb]

Hanneke,Fogwell,Gabrielse, PRL 100, 120801 (2008)

Their cylindrical Penning trap is shown next.
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Cylindrical Penning Trap

Figure: Cylindrical Penning Trap of Harvard experiment
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At Gabrielse’s apartment near CERN
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Feynman-Dyson method

Simple theoretical structure and availability of precise measurement
makes ae particularly suitable for high precision test of validity of QED.

However, computational methods of Tomonaga and Schwinger were too
cumbersome to handle theory to comparable precision.

It is diagrammatic method and use of Feynman propagator invented by
Feynman and elaborated by Dyson that simplifies the calculation
enormously and enables us to evaluate g − 2 systematically to high
orders.

Feynman, Phys. Rev. 74, 1430, (1948); 76, 769 (1949)
Dyson, Phys. Rev. 75, 486, 1736 (1949)
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(a) Feynman explaining parton theory, 1962 (b) Freeman Dyson
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Figure: Feynman diagram: Radiative correction to the scattering of electron from
momentum p to momentum p

′

by the potential (represented by q).

Feynman-Dyson rule gives:

lim
ǫ→+0

∫
d4kū(p

′

)γν i
/p′ − /k − m + iǫ

γµ i
/p − /k − m + iǫ

γνu(p)
−i

k2 + iǫ

Schwinger’s formula will be ∼ 8 times longer.

Tomonaga’s formula will be even longer.
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Following Dyson we can write ae as
ae = ae(QED) + ae(hadron) + ae(electroweak), where

ae(QED) = A1 + A2(me/mµ) + A2(me/mτ ) + A3(me/mµ, me/mτ )

Ai = A(2)
i

(α

π

)
+ A(4)

i

(α

π

)2
+ A(6)

i

(α

π

)3
+ . . . , i = 1, 2, 3

First four A1 terms are known analytically or by numerical integration

A(2)
1 = 0.5 1 Feynman diagram (analytic)

A(4)
1 = −0.328 478 965 . . . 7 Feynman diagrams (analytic)

A(6)
1 = 1.181 241 456 . . . 72 Feynman diagrams (analytic,numerical)

A(8)
1 = −1.914 4 (35) 891 Feynman diagrams (numerical)

Laporta, Remiddi, PLB 379, 283 (1996)
Kinoshita, PRL 75, 4728 (1995)

Kinoshita,Nio, PRD 73, 013003 (2006)
Aoyama,Hayakawa,Kinoshita,Nio, PRD 77, 053012 (2008)
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A2 term is small but not negligible: ∼ 2.72 × 10−12.

A3 term is completely negligible at present: (∼ 2.4 × 10−21).
Hadronic and electroweak contributions (in SM) are also known

a) ae(hadron) = 1.689 (20) × 10−12

Jegerlehner, priv. com. 1996
Krause, PLB 390, 392 (1997)

Nyfeller, arXiv:0901.1172 [hep-ph]

b) ae(EW) = 0.030 × 10−12

Czarnecki et al ., PRL 76, 3267 (1996)
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If one assumes |A(10)
1 | < 4.6

Mohr,Taylor,Newell, RMP 80, 633 (2008)

for the unknown 10th-order term, one obtains

ae(Rb) = 1 159 652 182.79 (0.11)(0.37)(7.72) × 10−12,

ae(exp) − ae(Rb) = −2.06 (7.72) × 10−12.

where
α−1(Rb) = 137.035 998 84 (91). [6.7 ppb],

is the value obtained by an optical lattice method.
P. Cladé et al., PRA 74, 052109 (2006)

Uncertainty 0.11 of A(8)
1 and guestimated error 0.37 of A(10)

1 are much
smaller than 7.72 of the best measured α available.

Thus unknown A(10)
1 does not appear to be a serious problem.
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To put it somewhat differently, non-QED α, even the best one, is too crude
to test QED to the precision achieved by theory and measurement of ae.

Thus it makes more sense to test QED by an alternative approach:

Get α from theory and measurement of ae

and compare it with other α’s.

This yields

α−1(ae) = 137.035 999 085 (12)(37)(33) [0.37 ppb],

where 12, 37, 33 are uncertainties of 8th-order, 10th-order, and ae(exp).

Now the unknown A(10)
1 becomes the largest source of uncertainty.
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Work on the tenth-order term

Harvard group is working to reduce measurement error.

Further progress of theory is not possible unless A(10)
1 is actually

calculated.

Thus we began working on the 10th-order term more than 7 years ago.
12672 Feynman diagrams contribute to A(10)

1 .
9080 Feynman diagrams contributing to A(10)

2 .

Clearly this is a gigantic project, requiring systematic and highly
automated approach.

First step: Classify them into gauge-invariant sets.
There are 32 gauge-invariant sets within 6 supersets.
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I(a) I(b) I(c)

I(d) I(e) I(f)

I(g) I(h) I(i)

I(j)

Figure: Diagrams of Superset I.

Set I consists of 10 subsets, all built from a second-order vertex. Solid lines
represent electron propagating in magnetic field. Wavy lines represent
photons. 208 diagrams contribute to A(10)

1 . 498 contribute to A(10)
2 (me/mµ).
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II(a) II(b) II(c)

II(d) II(e) II(f)

Figure: Diagrams of Superset II.

Set II is built from fourth-order proper vertices. 600 diagrams contribute to
A(10)

1 . 1176 diagrams contribute to A(10)
2 (me/mµ).

III(a) III(b) III(c)

Figure: Diagrams of Superset III.

Set III is built from sixth-order proper vertices. 1140 diagrams contribute to
A(10)

1 . 1740 diagrams contribute to A(10)
2 (me/mµ).
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Figure: Diagrams of Superset IV.

Set IV is built from eighth-order proper vertices. 2072 diagrams contribute to
both A(10)

1 and A(10)
2 (me/mµ).

Figure: Diagrams of Superset V.

Set V consists of 10th-order proper vertices with no closed lepton loop. 6354
diagrams contribute to A(10)

1 . No contribution to A(10)
2 (me/mµ).
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VI(a) VI(b) VI(c)

VI(d) VI(e) VI(f)

VI(g) VI(h) VI(i)

VI(j) VI(k)

Figure: Diagrams of Superset VI.

This set has 11 subsets, all containing light-by-light-scattering subdiagrams.
2298 diagrams contribute to A(10)

1 . 3594 contribute to A(10)
2 (me/mµ).
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Tenth-Order Diagrams with Closed Lepton Loops

Actually, sets I(a), I(b), I(c), II(a), II(b) are fairly simple and even analytical
results are known for some of them.

S. Laporta, PLB 328, 522 (1994)

Analytic integration of other diagrams is far more difficult.
(Recall: Even 8th-order is not yet done.)

Numerical approach is the only viable option at present.

This is relatively easy for g-i sets containing only v-p loops.

We have only to modify known lower-order integrals slightly.
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Diagrams containing light-light-scattering subdiagram are much harder to
evaluate.

But we managed to integrate some of them by 2006.
Kinoshita,Nio, Phys. Rev. D 73, 013003 (2006)

Now we have evaluated all other sets with the help of automatic code
generators gencodevpN and gencodeLLN.

Aoyama,Hayakawa,Kinoshita,Nio, Phys. Rev. D 78, 113006 (2008)
Aoyama,Hayakawa,Kinoshita,Nio,Watanabe, Phys. Rev. D 78, 053005 (2008)

Aoyama,Asano,Hayakawa,Kinoshita,Nio,Watanabe, Phys. Rev. D 81, 053009 (2010)

Tables on next pages summarize the current status, including those
published already.
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Table: Numerical values of diagrams of Set I. Preliminary results are indicated by red

Set A(10)
1 A(10)

2 (me/mµ) A(10)
2 (mµ/me) A(10)

2 (mµ/mτ ) A(10)
3 (mµ/me, mµ/mτ )

I(a) 0.000 470 94 (6) 0.000 000 28 (0) 22.567 05 (25) 0.000 038 (1) 0.015 200 (7)
I(b) 0.007 010 8 (7) 0.000 001 88 (0) 30.667 54 (33) 0.000 271 (1) 0.020 176 (8)
I(c) 0.023 468 (2) 0.000 002 67 (0) 5.141 38 (15) 0.003 936 (1) 0.002 331 (2)
I(d) 0.004 451 7 (5) 0.000 000 39 (0) 8.892 07 (102) 0.000 057 (1) 0.001 225 (8)
I(e) 0.010 296 (4) 0.000 001 60 (0) −1.219 20 (71) 0.000 232 (1) 0.002 372 (2)
I(f ) 0.008 445 9 (14) 0.000 047 54 (7) 3.685 10 (13) 0.001 231 (6) 0.019 730 (13)
I(g)∗ 0.028 569 (6) 0.000 023 49 (2) 2.607 87 (38) 0.001 697 (3) 0.002 721 (5)
I(h)∗ 0.001 696 (13) −0.000 010 56 (14) −0.568 61 (104) 0.000 160 (5) 0.001 978 (18)
I(i)∗ 0.017 47 (11) 0.000 001 67 (3) 0.087 6 (65) 0.000 237 (2) absent
I(j) 0.000 397 5 (18) 0.000 002 3 (1) −1.263 72 (14) 0.000 149 (2) 0.000 110 (5)

* Generated automatically by gencodeN and gencodevpN.
Columns 2, 3, 4, 5, 6 list mass-independent terms of ae , terms of ae dependent on me/mµ, electron loop

contributions to aµ, tau-lepton loop contribution to aµ, and terms of aµ dependent on both mµ/me and

mµ/mτ , respectively.
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Table: Numerical values of diagrams of Sets II, III, and IV. Preliminary results are
indicated by red.

Set A(10)
1 A(10)

2 (me/mµ) A(10)
2 (mµ/me) A(10)

2 (mµ/mτ ) A(10)
3 (mµ/me, mµ/mτ )

II(a) 0.004 13 (9) −0.000 513 (8) −70.471 7 (38) −0.086 88 (74) −0.523 9 (22)
II(b) −0.054 22 (4) −0.000 630 (7) −34.771 5 (26) 0.004 71 (15) 0.035 90 (94)
II(c)∗ −0.116 39 (13) −0.000 366 (1) −3.999 5 (72) −0.125 110 (78) −0.051 85 (32)
II(d)∗ −0.243 00 (29) −0.000 097 (1) 0.513 7 (85) −0.007 69 (4) absent
II(e)∗ −1.344 9 (10) −0.000 465 (4) 3.265 (12) −0.038 1 (2) absent
II(f ) −2.434 6 (16) −0.005 94 (49) −77.465 (12) −0.267 5 (65) −0.505 (27)

III(a)∗ 2.127 48 (22) −0.013 69 (11) 109.022 7 (32) 1.021 07 (48) absent
III(b)∗ 3.326 94 (33) 0.002 730 (35) 11.936 7 (46) 0.142 6 (12) absent
III(c) 4.906 (22) 0.003 49 (91) 7.20 (24) 0.202 5 (37) absent

IV ∗ −7.736 0 (52) −0.009 77 (16) −38.81 (17) −0.441 3 (40) absent

* Generated automatically by gencodeN and gencodevpN.
Columns 2, 3, 4, 5, 6 list mass-independent terms of ae , terms of ae dependent on me/mµ, electron loop

contributions to aµ, tau-lepton loop contribution to aµ, and terms of aµ dependent on both mµ/me and

mµ/mτ , respectively.
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Set VI containing light-by-light-scattering loop(s) are more difficult.

Table: Numerical values of diagrams of Set VI. Preliminary results are indicated by red.

Set A(10)
1 A(10)

2 (me/mµ) A(10)
2 (mµ/me) A(10)

2 (mµ/mτ ) A(10)
3 (mµ/me, mµ/mτ )

VI(a) 1.041 7 (4) 0.004 97 (29) 629.141 (12) 0.227 3 (48) 1.991 (71)
VI(b) 1.347 3 (3) 0.001 742 (47) 181.128 5 (51) 0.095 3 (11) 0.189 3 (32)
VI(c) −2.592 2 (34) −0.005 34 (47) −36.576 (114) −0.279 3 (77) −0.478 7 (954)
VI(d)∗ 1.846 7 (70) 0.001 276 (76) −7.983 (811) 0.081 77 (151) absent
VI(e) −0.431 2 (6) −0.000 765 (40) −4.322 (135) −0.035 77 (57) −0.118 2 (58)
VI(f ) 0.770 3 (24) −0.000 26 (26) −38.16 (15) 0.119 (57) 0.173 (11)
VI(g)∗ −1.590 4 (63) −0.000 497 (29) 7.346 (489) −0.044 51 (96) absent
VI(h)∗ 0.179 2 (39) 0.000 045 (10) −8.546 (231) 0.004 85 (46) absent
VI(i) −0.043 8 (11) −0.000 508 (123) −27.337 (115) −0.004 53 (172) −0.004 1 (77)
VI(j) −0.228 8 (17) −0.000 37 (35) −25.505 (20) −0.014 2 (63) 0.237 (14)
VI(k) 0.680 2 (38) 0.000 202 (24) 97.123 (62) 0.001 4 (17) absent

* Generated automatically by gencodeLLN.
Columns 2, 3, 4, 5, 6 list mass-independent terms of ae , terms of ae dependent on me/mµ, electron loop

contributions to aµ, tau-lepton loop contribution to aµ, and terms of aµ dependent on both mµ/me and

mµ/mτ , respectively.
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Evaluation of Set V

Largest and most difficult is Set V, which consists of 6354 Feynman
diagrams, more than half of total: 12672.

Luckily, Set V has nice feature that the sum Λν(p, q) of 9 vertex diagrams,
obtained by inserting an external vertex in the electron lines of a
self-energy diagram Σ(p), can be expressed in the form

Λν(p, q) ≃ −qµ[
∂Λµ(p, q)

∂qν
]q=0 −

∂Σ(p)

∂pν

which is derived from the Ward-Takahashi identity.

This enables us to cut no. of independent integrals to 706.

Time-reversal symmetry reduces it to 389. They are shown in next page.
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Figure: 389 self-energy diagrams representing 6354 vertex diagrams of Set V.
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It is to handle these diagrams that we developed the automatic code
generator gencodeN.

T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio,
Nucl. Phys. B 740, 138 (2006); B 796, 184 (2008).
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gencodeN

gencodeN consists of several steps:

Step I: Diagram identification
Specify diagram by vertex pairs connected by virtual photons. This
information is stored as plain-text file Xabc (abc = 001, 002, ..., 389).

Xabc defines not only the diagram itself but also identifies all UV- and
IR-divergent subdiagrams.

Implemented by Perl (and C++).
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Step II: Construction of unrenormalized integrand
Translate "Xabc" into mom. integral by Feynman-Dyson rule (by Perl).
Output serves as input for Home-made analytic integration table written in
FORM which turns it into a Feynman-parametric integral of the form

∫
(dz)f (z), (dz) ≡

N∏

i=1

dziδ(1 −
N∑

i=1

zi).

f (z) is very complicated func. of z and seems nearly intractable.

However, in terms of “building blocks” Bij , Ai , U, V , it exhibits
well-organized structure

f (z) =
F0(Bij , Ai)

U2V n−1 +
F1(Bij , Ai )

U3V n−2 + · · · .
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Step III: Construction of building blocks
Express Bij , U, V as polynomials of z1, z2, . . ., zN .

U, Bij are determined by network topology of loop momenta.

They are obtained automatically by MAPLE and FORM:

Xabc → Bij , U, . . .

Ai is fraction of external momentum in line i, and satisfies Kirchhoff’s loop
law and junction law for “currents”.

Form of V is common to all diagrams of Set V:

V =

electrons∑

i

zi(1 − Ai )m2,

where m is lepton mass.
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Step IV: Removal of UV divergence
Renormalization must be performed exactly to 8th order.

Our approach is subtractive renormalization.

UV divergence arises from subdiagram S identified by U → 0 for
ΣSzi → 0.

UV-subtraction term is built from original integrand by procedure, called
K-operation, which gives UV limits of Bij , Ai , U, V based on a simple
power-counting rule.
Properties of terms generated by K -operation:

Pointwise subtraction of UV divergence.
Subtraction term factorizes analytically into product of lower-order quantities,
a feature useful for cross-checking of different diagrams.
Gives only UV-divergent parts δmUV

n , LUV
n , BUV

n of renorm. consts. δmn, Ln,
Bn.
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Step V: Removal of IR divergence
These integrals still suffer from IR divergence, logarithmic or worse.

IR div. is characterized by V → 0 in subdomain of integration.

Linear (or worse) IR div., which is caused by the UV-finite term
δ̃mN ≡ δmN − δmUV

N (N > 2), is difficult to handle directly.

This problem can be avoided by subtracting δ̃mN together with the
UV-divergent δmUV

N so that full mass renormalization is achieved in Step
IV.

T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio,
Nucl. Phys. B 796, 184 (2008).

Remaining logarithmic IR divergence can be handled easily by
I-operation defined by the IR power counting.
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Example: Diagram X072

An example: Diagram X072.

Step I produces a file that contains just one-line statement

abcdeedcba

which shows how photons a, b, c, d , e are attached to the electron line.

This information is sufficient to generate complete instruction for Steps II
and III for building ’unrenormalized’ integral ’MX072’ and also Steps IV
and V for building UV-divergent and IR-divergent subintegrals.

In our renormalization scheme all terms (represented symbolically in next
page) are combined to form UV- and IR-finite piece "DMX072".
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UV- and IR-subtraction terms of X072.
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A shell script controls flow of all Steps automatically:
(a) Get input information from data "Xabc" prepared in Step I.
(b) Build FORTRAN codes following Steps II, III, IV, V.
(c) Assemble FORTRAN codes, ready them for numerical integration.

Numerical integration is carried out by adaptive-iterative Monte-Carlo
routine VEGAS.

Lepage, J. Comput. Phys. 27, 192 (1978)

Snapshot (11/02/2010) of calculation is shown in next pages in 12
columns, 4 columns for each diagram.

Second column lists number of subtraction terms.

Fourth column gives CPU time in minutes for 107 × 50 with 32 cores, in
real*8, for mutual comparison. Many results listed are obtained with
much higher statistics.
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Table: Set V diagrams from X001 - X099

dgrm sub. Value (Error) time dgrm sub. Value (Error) time dgrm sub. Value (Error) time
X 1 47 -0.2981(0.0327) 231 X 2 47 -5.9781(0.0462) 177 X 3 19 -0.1142(0.0094) 187
X 4 71 5.1280(0.0541) 241 X 5 43 1.1401(0.0377) 193 X 6 59 -5.2927(0.0433) 166
X 7 47 -3.4833(0.0467) 188 X 8 47 -16.5212(0.0554) 110 X 9 19 -2.8715(0.0584) 161
X 10 83 11.2762(0.0484) 105 X 11 43 6.0549(0.0453) 235 X 12 67 -9.3202(0.0304) 112
X 13 7 -1.3540(0.0038) 160 X 14 31 0.7833(0.0141) 228 X 15 2 2.1020(0.0019) 151
X 16 2 -0.9609(0.0019) 149 X 17 6 0.5174(0.0062) 150 X 18 6 0.0579(0.0069) 145
X 19 31 1.2183(0.0140) 192 X 20 134 -8.1361(0.0564) 90 X 21 11 -0.2967(0.0049) 162
X 22 79 0.9382(0.0433) 117 X 23 27 0.6047(0.0418) 220 X 24 75 -6.1010(0.0426) 119
X 25 39 -0.7824(0.0411) 188 X 26 95 -7.8186(0.0336) 98 X 27 15 -2.3190(0.0315) 166
X 28 71 4.5631(0.0588) 119 X 29 35 6.8839(0.0333) 167 X 30 67 -12.6108(0.0386) 99
X 31 2 2.2932(0.0029) 143 X 32 2 -0.2427(0.0013) 139 X 33 2 -1.3771(0.0014) 131
X 34 2 1.2539(0.0021) 140 X 35 2 -0.5838(0.0014) 145 X 36 11 0.2473(0.0064) 68
X 37 2 -0.7417(0.0020) 148 X 38 11 -0.2811(0.0049) 65 X 39 11 0.3164(0.0044) 208
X 40 47 1.4835(0.0314) 87 X 41 63 3.1418(0.0577) 175 X 42 119 -4.1234(0.0418) 84
X 43 15 -2.8829(0.0356) 149 X 44 59 4.4462(0.0399) 105 X 45 43 3.4311(0.0324) 118
X 46 95 -7.7361(0.0446) 88 X 47 2 -4.4551(0.0033) 125 X 48 2 -0.8051(0.0016) 135
X 49 2 -0.0295(0.0013) 130 X 50 2 -1.2222(0.0018) 123 X 51 2 -0.1733(0.0020) 148
X 52 11 0.9875(0.0094) 68 X 53 2 0.3646(0.0015) 144 X 54 11 -0.4924(0.0070) 65
X 55 2 -0.3634(0.0014) 146 X 56 11 -0.2408(0.0054) 68 X 57 23 2.6504(0.0164) 113
X 58 44 -5.1538(0.0331) 57 X 59 23 2.1860(0.0176) 142 X 60 92 -3.2758(0.0480) 90
X 61 68 -3.7959(0.0325) 100 X 62 161 5.9124(0.0428) 83 X 63 6 3.3563(0.0086) 143
X 64 6 -0.2763(0.0069) 145 X 65 6 0.1748(0.0055) 156 X 66 26 -3.5299(0.0396) 87
X 67 50 -1.7091(0.0660) 130 X 68 98 2.7344(0.0491) 86 X 69 18 -1.1586(0.0260) 110
X 70 70 3.2263(0.0329) 88 X 71 54 3.6918(0.0215) 100 X 72 134 -5.5392(0.0455) 86
X 73 47 3.4045(0.0448) 190 X 74 47 4.3918(0.0477) 199 X 75 47 -8.1355(0.0496) 165
X 76 19 -5.2424(0.0230) 176 X 77 39 3.2616(0.0443) 226 X 78 39 0.9403(0.0453) 225
X 79 71 5.4206(0.0466) 205 X 80 43 0.5166(0.0502) 206 X 81 59 -5.6569(0.0470) 152
X 82 47 -8.5074(0.0637) 202 X 83 47 18.7382(0.0475) 161 X 84 19 8.9855(0.0278) 173
X 85 39 -2.2692(0.0447) 217 X 86 39 0.5038(0.0442) 182 X 87 77 -16.5708(0.0650) 134
X 88 43 -5.2642(0.0480) 204 X 89 63 12.6876(0.0446) 138 X 90 19 1.5108(0.0294) 160
X 91 39 -1.8168(0.0486) 235 X 92 39 2.1022(0.0454) 194 X 93 7 -1.7604(0.0050) 160
X 94 15 -1.0460(0.0099) 194 X 95 7 0.5791(0.0043) 159 X 96 31 1.2849(0.0179) 196
X 97 17 4.7894(0.0593) 168 X 98 33 -1.9365(0.0370) 169 X 99 39 3.0813(0.0434) 195
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Table: Set V diagrams from X100 - X198

dgrm sub. Value (Error) time dgrm sub. Value (Error) time dgrm sub. Value (Error) time
X100 77 -15.3143(0.0627) 136 X101 15 -0.2625(0.0093) 188 X102 31 -1.3912(0.0312) 235
X103 31 0.8229(0.0193) 216 X104 79 6.4712(0.0581) 165 X105 35 3.0633(0.0487) 191
X106 71 -11.5433(0.0492) 136 X107 43 -4.6615(0.0584) 200 X108 63 12.9649(0.0440) 142
X109 17 0.0220(0.0440) 166 X110 35 1.9409(0.0417) 183 X111 33 3.4365(0.0688) 175
X112 71 -11.8915(0.0481) 136 X113 39 -4.4510(0.0545) 162 X114 63 11.0810(0.0468) 122
X115 7 -0.5947(0.0065) 158 X116 7 1.8059(0.0050) 161 X117 7 0.3232(0.0045) 157
X118 15 -3.2225(0.0106) 171 X119 15 -0.1055(0.0113) 197 X120 31 1.7913(0.0158) 194
X121 7 -0.8630(0.0044) 167 X122 7 -0.7414(0.0042) 162 X123 15 -3.3339(0.0075) 176
X124 29 11.1936(0.0631) 107 X125 31 0.7481(0.0189) 221 X126 59 -1.2410(0.0625) 139
X127 15 1.1349(0.0059) 192 X128 31 0.5916(0.0129) 198 X129 31 1.4312(0.0123) 220
X130 59 -1.5371(0.0393) 138 X131 59 3.1603(0.0727) 191 X132 101 -8.8220(0.0588) 125
X133 17 2.6477(0.0423) 172 X134 33 -0.4814(0.0641) 170 X135 33 1.0868(0.0659) 180
X136 65 -7.5387(0.0569) 137 X137 45 -2.5009(0.0739) 131 X138 85 10.1410(0.0480) 105
X139 47 14.8592(0.0502) 205 X140 39 -2.7411(0.0465) 156 X141 74 -12.5628(0.0680) 165
X142 43 -1.6913(0.0700) 189 X143 61 10.3414(0.0433) 154 X144 83 23.7308(0.0662) 103
X145 67 -18.6357(0.0471) 111 X146 39 -2.3801(0.0690) 200 X147 15 1.1276(0.0223) 149
X148 31 -1.3144(0.0364) 168 X149 17 -8.3912(0.0309) 164 X150 33 2.8037(0.0614) 195
X151 87 -10.8607(0.0603) 94 X152 77 14.6570(0.0480) 107 X153 77 14.9037(0.0559) 106
X154 67 -20.5911(0.0539) 102 X155 15 4.9510(0.0225) 169 X156 31 -0.7363(0.0454) 172
X157 32 -11.8522(0.0408) 69 X158 65 0.4466(0.0539) 83 X159 65 0.2208(0.0733) 84
X160 116 14.0278(0.0599) 96 X161 71 7.7606(0.0428) 102 X162 95 -12.8160(0.0408) 95
X163 19 6.6451(0.0702) 173 X164 19 -12.0134(0.0639) 137 X165 15 -2.1380(0.0114) 181
X166 15 -2.2856(0.0121) 169 X167 29 12.1602(0.0338) 115 X168 17 3.3651(0.0573) 158
X169 25 -6.9274(0.0247) 106 X170 39 0.2847(0.0573) 178 X171 39 -2.6059(0.0529) 164
X172 31 1.4301(0.0225) 214 X173 59 0.2731(0.0737) 237 X174 35 1.8660(0.0602) 177
X175 51 -1.8412(0.0397) 151 X176 7 0.7651(0.0184) 153 X177 15 -0.0111(0.0352) 149
X178 5 0.7079(0.0038) 153 X179 2 -0.4378(0.0034) 142 X180 11 0.0242(0.0044) 147
X181 6 -4.3571(0.0146) 142 X182 12 1.2875(0.0157) 167 X183 7 -0.0179(0.0186) 140
X184 31 0.4381(0.0637) 170 X185 5 -0.1313(0.0050) 142 X186 23 1.1634(0.0049) 195
X187 6 1.2832(0.0128) 137 X188 24 1.8185(0.0232) 190 X189 17 -3.7335(0.0226) 162
X190 33 -2.4993(0.0359) 193 X191 13 0.1938(0.0246) 150 X192 25 2.4665(0.0438) 175
X193 15 -4.2494(0.0175) 139 X194 27 -0.8543(0.0652) 163 X195 2 -1.0665(0.0045) 158
X196 2 -2.0375(0.0029) 130 X197 2 -0.3870(0.0022) 148 X198 5 -2.3452(0.0027) 132
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Table: Set V diagrams from X199 - X297

dgrm sub. Value (Error) time dgrm sub. Value (Error) time dgrm sub. Value (Error) time
X199 5 1.0493(0.0038) 145 X200 11 0.0092(0.0043) 151 X201 2 -0.4877(0.0037) 140
X202 2 1.9243(0.0030) 128 X203 2 0.9037(0.0023) 147 X204 11 -1.9324(0.0038) 158
X205 5 -0.9038(0.0049) 152 X206 23 1.6447(0.0065) 191 X207 5 0.2894(0.0042) 163
X208 11 0.5215(0.0040) 154 X209 5 0.1444(0.0040) 160 X210 23 0.7653(0.0049) 190
X211 23 5.1027(0.0348) 119 X212 41 -0.3297(0.0554) 173 X213 6 -2.4132(0.0118) 145
X214 12 0.6646(0.0142) 140 X215 6 0.1151(0.0120) 145 X216 24 -1.1993(0.0239) 164
X217 18 -2.2056(0.0537) 106 X218 30 -1.7370(0.0670) 130 X219 39 1.3630(0.0488) 173
X220 59 -2.4828(0.0511) 210 X221 35 0.6897(0.0347) 167 X222 51 0.8242(0.0386) 143
X223 116 17.4832(0.0543) 100 X224 31 2.4650(0.0232) 202 X225 23 0.2928(0.0098) 216
X226 13 1.0518(0.0231) 153 X227 25 0.6828(0.0398) 181 X228 75 -6.7788(0.0664) 108
X229 35 -1.9956(0.0651) 204 X230 71 15.6775(0.0549) 109 X231 11 -0.7467(0.0058) 177
X232 23 0.4010(0.0116) 215 X233 31 8.5433(0.0434) 79 X234 63 -2.4968(0.0460) 97
X235 23 0.7040(0.0100) 245 X236 63 2.0658(0.0381) 112 X237 113 -13.0105(0.0645) 104
X238 25 1.4003(0.0391) 180 X239 69 -2.8983(0.0645) 108 X240 93 10.9598(0.0571) 96
X241 43 13.8540(0.0634) 210 X242 68 -10.5143(0.0659) 195 X243 57 3.8884(0.0582) 176
X244 35 -3.3003(0.0654) 200 X245 27 0.0824(0.0338) 176 X246 29 -0.4379(0.0365) 192
X247 39 15.9448(0.0552) 213 X248 31 -1.9496(0.0459) 161 X249 13 3.9940(0.0159) 156
X250 27 -0.8949(0.0402) 172 X251 27 -1.2982(0.0300) 170 X252 56 -10.9812(0.0691) 141
X253 113 17.8089(0.0672) 86 X254 29 2.1746(0.0392) 192 X255 43 8.1509(0.0541) 140
X256 93 -14.0506(0.0543) 93 X257 7 5.6299(0.0259) 133 X258 7 -0.4470(0.0168) 155
X259 5 0.0160(0.0049) 141 X260 5 -0.4007(0.0036) 165 X261 6 6.3373(0.0172) 132
X262 6 -2.2800(0.0140) 153 X263 7 -2.7605(0.0144) 142 X264 15 4.7945(0.0346) 156
X265 5 -0.6741(0.0034) 141 X266 11 0.1179(0.0048) 167 X267 6 -0.6336(0.0099) 138
X268 12 0.1262(0.0191) 156 X269 15 -0.6542(0.0308) 171 X270 31 -1.5919(0.0607) 173
X271 11 0.2415(0.0053) 205 X272 23 -0.7339(0.0093) 217 X273 13 -2.0001(0.0240) 165
X274 25 0.8899(0.0406) 175 X275 2 -0.7434(0.0044) 126 X276 2 -0.5544(0.0028) 133
X277 2 2.7843(0.0015) 185 X278 5 -0.1559(0.0044) 144 X279 5 0.8231(0.0038) 164
X280 2 -1.0096(0.0046) 130 X281 5 -1.3724(0.0041) 154 X282 5 0.4841(0.0034) 148
X283 11 -0.0505(0.0042) 167 X284 2 -0.2711(0.0032) 159 X285 5 0.0169(0.0039) 152
X286 11 0.7775(0.0038) 186 X287 23 0.1874(0.0068) 190 X288 6 4.1604(0.0152) 130
X289 6 -1.5135(0.0130) 152 X290 6 -3.7248(0.0117) 143 X291 12 1.5878(0.0178) 158
X292 12 0.9126(0.0149) 163 X293 24 -1.1657(0.0266) 167 X294 7 -3.3322(0.0166) 150
X295 7 1.7876(0.0186) 151 X296 5 0.5448(0.0046) 170 X297 5 -0.4792(0.0047) 160
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Table: Set V diagrams from X298 - X389

dgrm sub. Value (Error) time dgrm sub. Value (Error) time dgrm sub. Value (Error) time

X298 6 -1.8909(0.0115) 158 X299 6 -0.2647(0.0122) 155 X300 29 -9.3516(0.0580) 84
X301 31 -1.0812(0.0672) 184 X302 59 -1.8824(0.0523) 105 X303 2 0.3213(0.0025) 152
X304 5 -0.3422(0.0049) 165 X305 5 0.4619(0.0040) 167 X306 23 0.1582(0.0226) 71
X307 47 -0.1151(0.0397) 88 X308 6 1.8367(0.0145) 154 X309 26 -4.2650(0.0376) 84
X310 50 -0.0629(0.0737) 100 X311 15 -0.4378(0.0278) 165 X312 31 -1.1090(0.0534) 177
X313 11 0.9513(0.0043) 192 X314 23 0.7992(0.0070) 203 X315 13 -1.2886(0.0216) 163
X316 25 0.1050(0.0338) 187 X317 59 1.3935(0.0522) 106 X318 62 -8.7913(0.0674) 170
X319 47 0.7468(0.0678) 204 X320 11 0.5585(0.0045) 168 X321 23 -0.9154(0.0078) 237
X322 23 0.9205(0.0032) 189 X323 25 0.0954(0.0331) 173 X324 53 -8.8189(0.0510) 133
X325 107 11.6018(0.0571) 93 X326 17 -8.8868(0.0557) 170 X327 33 1.4993(0.0617) 192
X328 13 -0.2799(0.0191) 163 X329 25 -0.8929(0.0252) 180 X330 15 -4.8847(0.0546) 174
X331 27 4.4591(0.0628) 194 X332 33 2.8378(0.0722) 195 X333 65 6.7152(0.0634) 122
X334 47 5.2084(0.0554) 163 X335 37 -2.0700(0.0568) 139 X336 6 -0.7509(0.0076) 153
X337 12 -1.1895(0.0143) 146 X338 13 -1.8395(0.0208) 168 X339 25 0.4930(0.0283) 169
X340 53 -2.2777(0.0676) 93 X341 24 1.8004(0.0137) 156 X342 27 2.5993(0.0173) 157
X343 2 3.8805(0.0029) 149 X344 2 3.4147(0.0037) 122 X345 2 -1.0015(0.0024) 153
X346 2 0.2844(0.0037) 138 X347 2 -2.6792(0.0028) 149 X348 2 -0.4859(0.0038) 149
X349 5 2.0816(0.0043) 151 X350 2 1.4548(0.0023) 143 X351 5 0.2449(0.0034) 155
X352 2 -0.1319(0.0025) 157 X353 5 0.1884(0.0025) 169 X354 5 -2.0375(0.0025) 148
X355 11 -1.0637(0.0031) 162 X356 5 2.0708(0.0049) 161 X357 5 0.3634(0.0037) 168
X358 5 0.0333(0.0043) 165 X359 11 -0.1515(0.0046) 170 X360 11 -0.4709(0.0042) 182
X361 23 2.5319(0.0064) 201 X362 2 -0.5660(0.0036) 147 X363 2 -2.3416(0.0022) 141
X364 2 2.3899(0.0021) 147 X365 11 0.4884(0.0115) 62 X366 23 5.6077(0.0222) 65
X367 5 -0.7180(0.0049) 171 X368 23 -0.2878(0.0180) 68 X369 47 -3.2062(0.0395) 77
X370 5 -1.4791(0.0045) 155 X371 5 -0.0074(0.0042) 154 X372 11 -1.2875(0.0025) 162
X373 23 0.5684(0.0039) 183 X374 47 0.9446(0.0533) 147 X375 89 0.8509(0.0589) 68
X376 5 1.0369(0.0034) 164 X377 11 0.4192(0.0036) 188 X378 11 1.3081(0.0034) 176
X379 23 -0.3402(0.0052) 198 X380 47 -0.9354(0.0359) 76 X381 23 1.0677(0.0038) 187
X382 41 -1.6457(0.0389) 183 X383 6 -4.7039(0.0136) 151 X384 12 1.9230(0.0184) 158
X385 12 -0.6982(0.0141) 157 X386 24 0.7383(0.0244) 163 X387 50 1.7962(0.0748) 89
X388 24 -0.3893(0.0199) 163 X389 30 -0.2604(0.0589) 127
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Statistics of running Set V:
10–20 minutes for generating FORTRAN code for each diagram on HP
Alpha.
Typical integrand consists of 90,000 lines of FORTRAN code occupying
more than 6 Megabytes.
Evaluation of integral in real*8 with 107 sampling points × 50 iterations takes
2 − 4 hours on 32 cores of RICC (RIKEN Integrated Clusters of Clusters).
Evaluation in real*16 is about 10 times slower.
Large runs: real*16, 109

× 100, takes about 24 days on 256 cores of RICC.
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VI: Residual renormalization
Integrals in these Tables are UV- and IR-finite, but not standard
renormalized amplitudes.

Thus finite adjustment, called residual renormalization, must be carried
out to get observable g−2.

Residual renormalization of all diagrams of Set V requires systematic
handling of more than 10,000 integrals.
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Fortunately, they can be organized into 16 terms whose structures are
readily recognizable in terms of lower-order quantities

a10 = ∆M10

+ ∆M8

„

−7∆LB2

«

+ ∆M6

„

−5 ∆LB4 + 20 (∆LB2)
2
«

+ ∆M4

„

−3 ∆LB6 + 24 ∆LB2 ∆LB4 − 28 (∆LB2)
3 + 2 ∆L2⋆ ∆δm4

«

+ ∆M2

„

−∆LB8 + 4 (∆LB4)
2

+ 8 ∆LB2 ∆LB6 − 28 (∆LB2)
2
∆LB4 + 14 (∆LB2)

4

+2 ∆L2⋆ ∆δm6 − 2 ∆L2⋆ ∆δm2⋆ ∆δm4 − 16 ∆L2⋆ ∆LB2 ∆δm4 + ∆L4⋆ ∆δm4

«

where ∆Mn is the finite part of the n-th order magnetic moment,
∆LBn is the sum of finite parts of the n-th order vertex renormalization constant ∆Ln and the
wavefunction renormalization constant ∆Bn ,
∆δmn is the finite part of the n-th order selfmass of the electron,
∆Ln⋆ is obtained from ∆Ln by insertion of 2-vertex in the electron line.
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When residual renormalization is included entire FORTRAN codes
becomes analytically exact. No approximation involved.

Uncertainty of numerical value arises only from numerical integration,
which is performed by adaptive-iterative Monte-Carlo routine VEGAS.
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Latest value (11/02/2010) of the sum of 389 integrals and residual
renormalization terms is

A(10)
1 [Set V] = 9.752 (733) [Preliminary]

Uncertainty is being reduced further.

To obtain A(10)
1 [all] we must add values of other 31 sets.

This leads to

A(10)
1 [all] = 4.364 (733) [Preliminary]

This is still very crude but is already about 6 times more precise than the
previous guestimate |A(10)

1 | < 4.6.
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Improving A(8)
1

We are also working to reduce the uncertainty of A(8)
1 .

The latest value (11/02/2010) is

A(8)
1 = −1.910 8 (25) [Preliminary]

In terms of these values of A(8)
1 and A(10)

1 we find

α
−1(ae) = 137.035 999 132 (9)(6)(33)

[0.254 ppb], [Preliminary]

where 9, 6, 33 are uncertainties of 8th-order, 10th-order, and ae(exp).

This is about 30 times more precise than α−1(Rb).

Further progress now depends on improving ae(exp).
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Discussion

Discoverers of QED regarded the renormalization procedure as a
jelly-built temporary fix to be replaced by something better.

Tomonaga: Private communication.
Letter of Dyson to Gabrielse quoted in Physics Today (August 2006), p.15.

Figure:
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In fact it was soon found that QED must be enlarged to include hadronic
and weak interactions, which led to the Standard Model (SM).

But jelly-built structure itself remained as the basic framework of SM.

SM itself is generally regarded as temporary measure which requires
further modification to accommodate new physics.

Such modification is most likely to come from experiments at high energy
accelerators such as LHC.

However, impact of new physics on ae may not necessarily be
straightforward.

T. Kinoshita () 55 / 57



As a matter of fact, it might have no detectable effect on g−2.

Reason: Independent α’s measured by non-QED means must also
include the effect of new physics.

Recall that masses and charges involved in ordinary QM cannot be
correctly identified as physical mass and charge to the precision that
requires radiative corrections.

For proper interpretation the ordinary QM, by which these measurements
of α are interpreted, must be extended to include these effects.

Such a formulation was obtained for one- and two-body systems as the
nonrelativistic limit of explicitly renormalized QED (or SM), unfortunately
misnamed NRQED.

Caswell, Lepage, PL 167B, 437 (1986)

As far as I know, no attempt has been made thus far to extend it to
many-particle systems.
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To conclude, the jelly-built structure still looks good at the precision
exceeding 1 part in 109.

If disagreement is detected at the next level of precision it might indicate
that breakdown of SM comes, not necessarily from high energy region,
but from an entirely unexpected direction.

Unfortunately such an event may not be detectable until α is measured by
some independent method with precision comparable to that of α(ae).

Until then, α(ae) serves as the yardstick by which validity of other types of
measurements and their theories is examined.
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