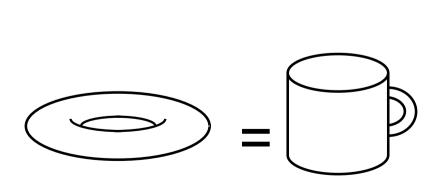
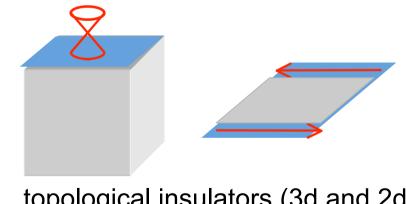
Topological Insulators

Akira Furusaki (Condensed Matter Theory Lab.)





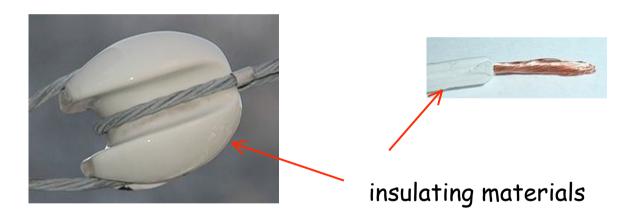
topological insulators (3d and 2d)

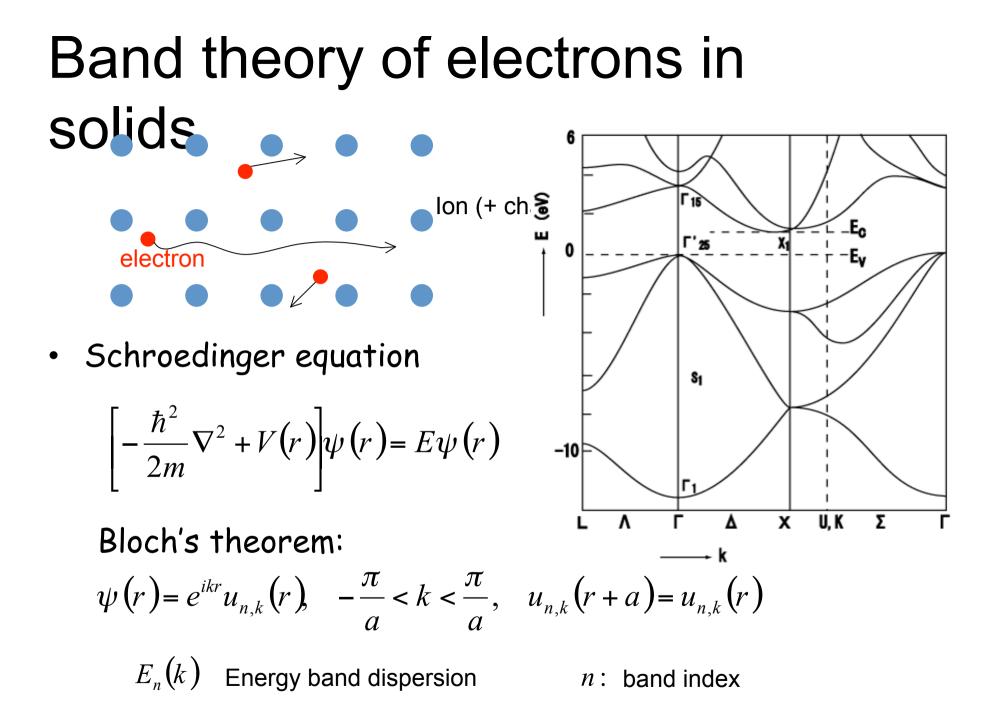
Outline

- Introduction: band theory
- Example of topological insulators: integer quantum Hall effect
- New members: Z₂ topological insulators
- Table of topological insulators

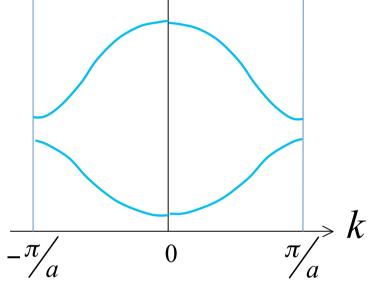
Insulator

• A material which resists the flow of electric current.





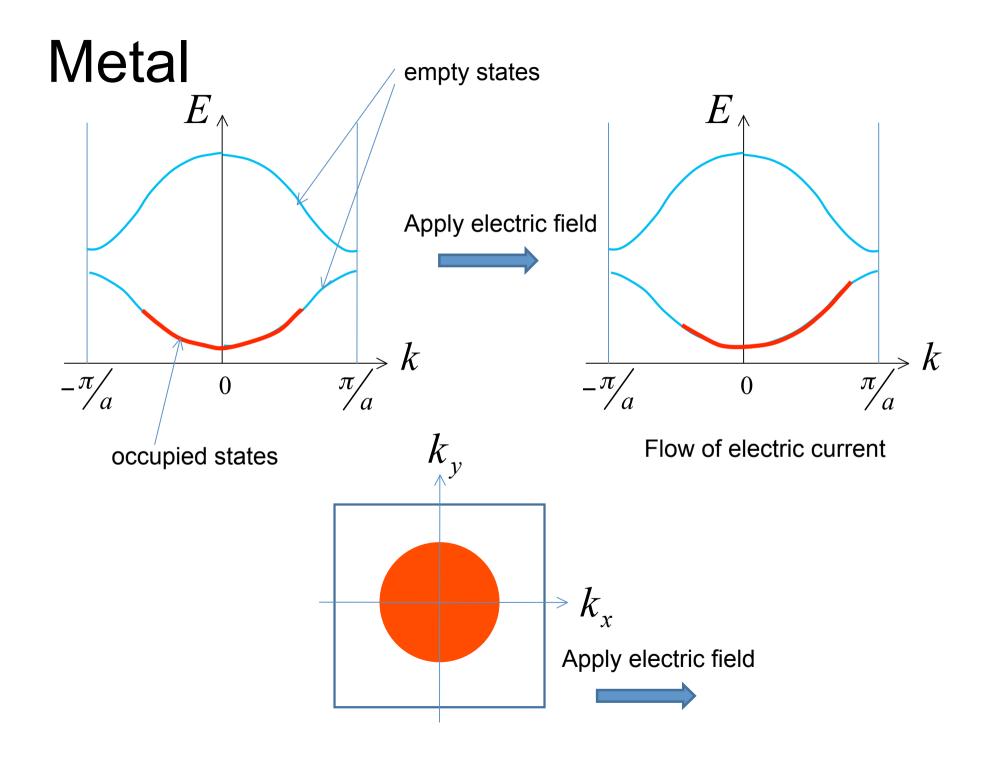
Metal and insulator in the band theory $E_{E_{A}}$

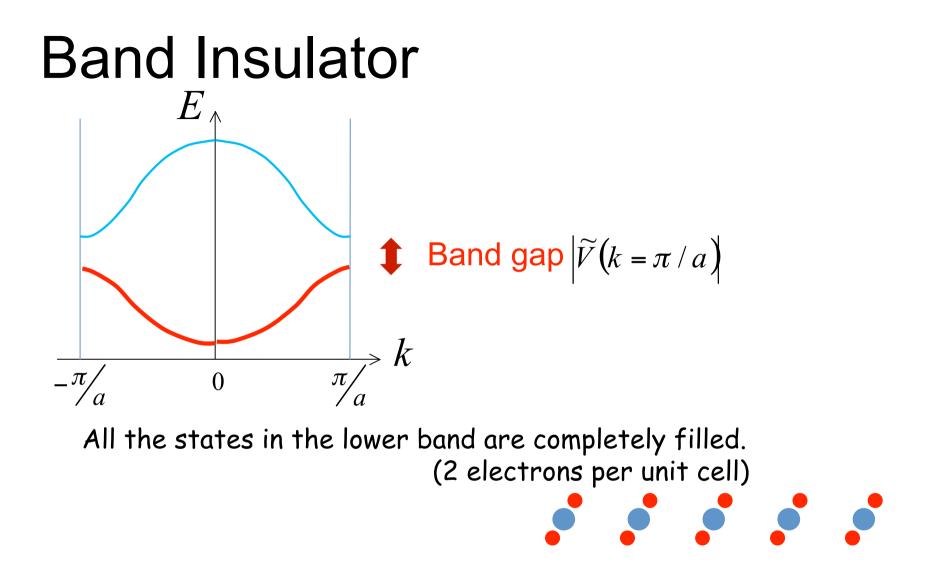


Electrons are fermions (spin=1/2).

Each state (n,k) can accommodate up to two electrons (up, down spins).

Pauli principle

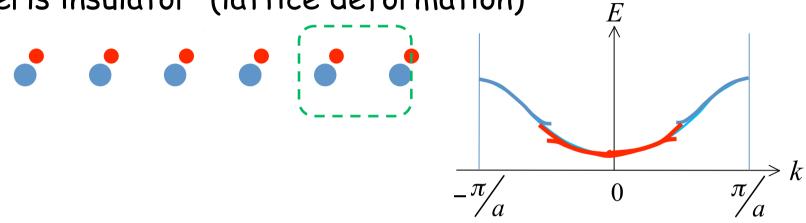




Electric current does not flow under (weak) electric field.

Digression: other (named) insulators

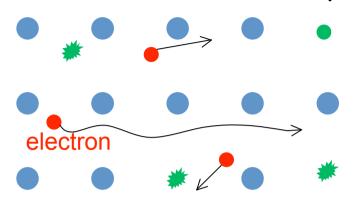
• Peierls insulator (lattice deformation)



• Mott insulator (Coulomb repulsion)

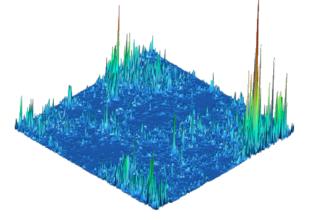
Large Coulomb energy! Electrons cannot move.

• Anderson insulator (impurity scattering)



Random scattering causes interference of electron's wave function.

Anderson localization



Is that all?

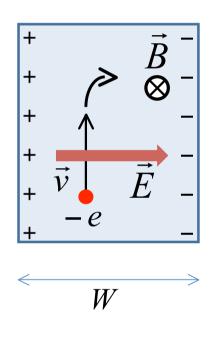
No !

Yet another type of insulators: Topological insulators !

A topological insulator is a band insulator which is characterized by a topological number and which has gapless excitations at its boundaries.

Prominent example: quantum Hall effect

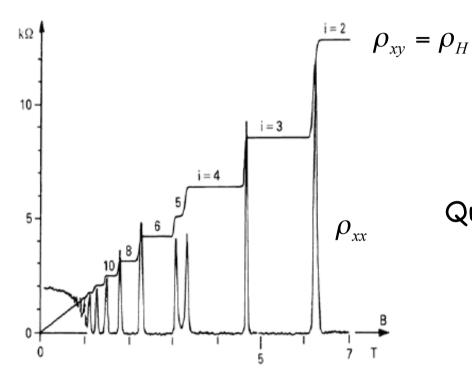
• Classical Hall effect



Lorentz force $\vec{F} = -e\vec{v} \times \vec{B}$

Hall Effect Hall resistance n: electron density Magnetic field \longrightarrow Electric current I = -nevWElectric field $E = \frac{v}{c}B$ Hall voltage $V_H = EW = \frac{B}{I}$ -ne $R_H = \frac{B}{-ne}$ Hall resistance $\sigma_{xy} = \frac{1}{R_H}$ Hall conductance

Integer quantum Hall effect (von Klitzing 1980)



$$\frac{h}{e^2} = 25812.807\Omega$$

Quantization of Hall conductance

$$\sigma_{xy} = i \frac{e^2}{h}$$

exact, robust against disorder etc.

Integer quantum Hall effect

- Electrons are confined in a two-dimensional plane.
 (ex. AlGaAs/GaAs interface)
- Strong magnetic field is applied (perpendicular to the plane)
 AlGaAs GaAs
 Cyclotron motion

Landau levels:

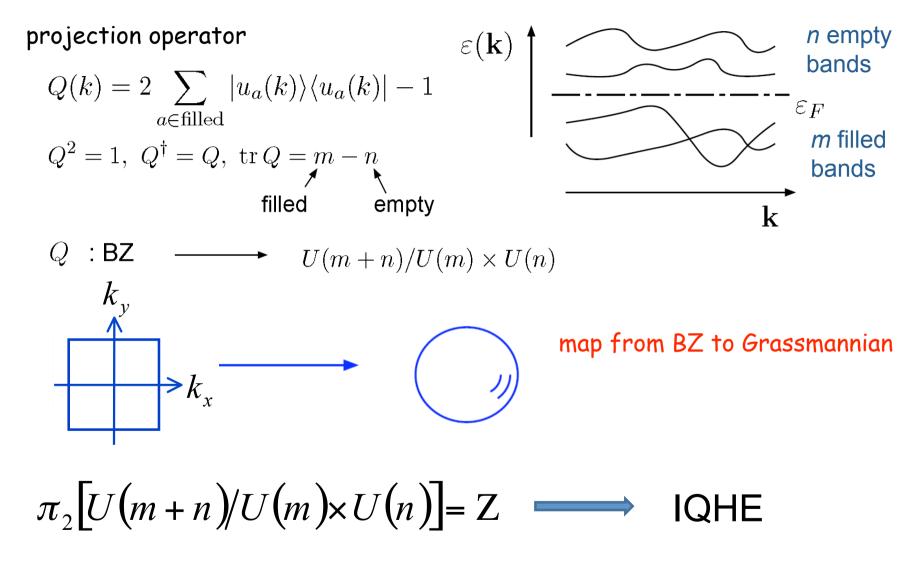
TKNN number (Thouless-Kohmoto-Nightingaleden Nijs)

$$\sigma_{xy} = -\frac{e^2}{h}C$$

TKNN (1982); Kohmoto (1985)

first Chern number (topological invariant)
$$\psi = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$
$$C = \frac{1}{2\pi i} \int_{\text{filled band}} d^2 r \left(\frac{\partial u^*}{\partial k_y} \frac{\partial u}{\partial k_x} - \frac{\partial u^*}{\partial k_x} \frac{\partial u}{\partial k_y} \right) \qquad \text{integer valued}$$
$$= \frac{1}{2\pi i} \int d^2 k \, \vec{\nabla}_k \times \vec{A}(k_x, k_y) \qquad \vec{A}(k_x, k_y) = \left\langle u_{\vec{k}} \, \middle| \vec{\nabla}_k \, \middle| u_{\vec{k}} \right\rangle$$

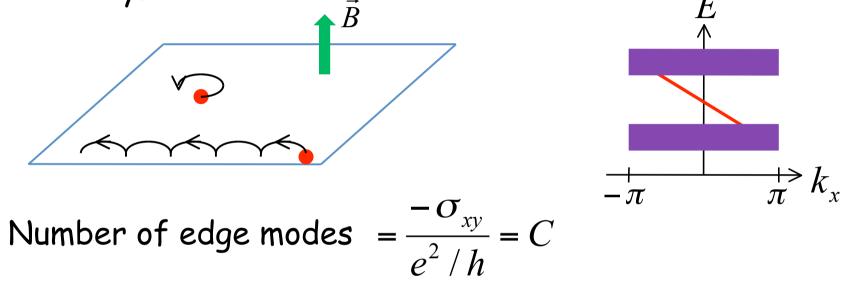
Topological distinction of ground states



homotopy class

Edge states

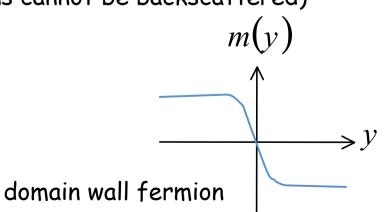
There is a gapless chiral edge mode along the sample boundary.



Robust against disorder (chiral fermions cannot be backscattered)

Effective field theory

$$H = -iv (\sigma_x \partial_x + \sigma_y \partial_y) + m(y) \sigma_z$$



Topological Insulators (definition ??)

- (band) insulator with a nonzero gap to excitated states
- topological number stable against any (weak) perturbation
- gapless edge mode
- When the gapless mode appears/disappears, the bulk (band) gap closes. Quantum Phase Transition

- Low-energy effective theory
 - = topological field theory (Chern-Simons)

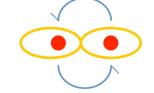
Fractional quantum Hall effect $a \neq \frac{5}{2}$

- 2nd Landau level
- Even denominator (cf. Laughlin states: odd denominator)
- Moore-Read (Pfaffian) state

$$z_{j} = x_{j} + iy_{j}$$

$$\psi_{\mathrm{MR}} = \mathrm{Pf}\left(\frac{1}{z_{i} - z_{j}}\right) \prod_{i < j} (z_{i} - z_{j}) e^{-\sum |z_{i}|^{2}} \qquad \mathrm{Pf}\left(A_{ij}\right) = \sqrt{\det A_{ij}}$$

Pf() is equal to the BCS wave function of p_x+ip_y pairing state.

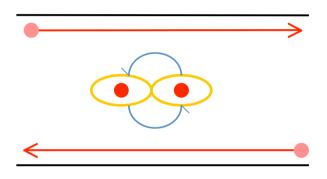


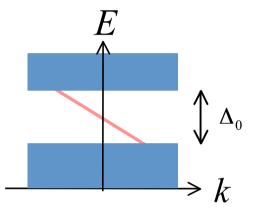
Bound state of two spinless ferions: P-wave & angular momentum=1

Excitations above the Moore-Read state obey non-Abelian statistics.

Spinless $p_x + ip_y$ superconductor in 2 dim.

- Order parameter $\Delta(\vec{k}) \propto \langle \Psi_k \Psi_{-k} \rangle \propto \Delta_0(k_x + ik_y)$
- Chiral (Majorana) edge state





Majorana bound state in a quantum vortex

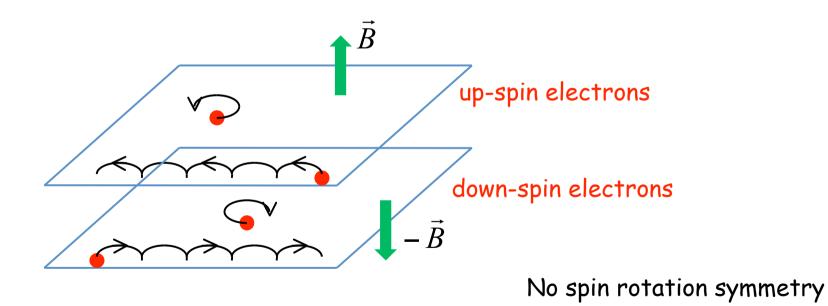
$$\oint$$
 vortex $\phi = \frac{hc}{e}$

Bogoliubov-de Gennes equation

 $\begin{pmatrix} h_0 & \Delta \\ \Delta^* & -h_0^* \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \varepsilon \begin{pmatrix} u \\ v \end{pmatrix} \qquad \qquad h_0 = \frac{1}{2m} \left(\vec{p} + e\vec{A} \right) - E_F \qquad \begin{pmatrix} \Psi \\ \Psi^+ \end{pmatrix} \Leftrightarrow \begin{pmatrix} u \\ v \end{pmatrix}$ particle-hole symmetry $\varepsilon : \begin{pmatrix} u \\ v \end{pmatrix} \Rightarrow -\varepsilon : \begin{pmatrix} v^* \\ u^* \end{pmatrix}$ $\varepsilon_n = n\omega_0, \quad \omega_0 \approx \Delta_0^2 / E_F$ zero mode $\varepsilon_0 = 0$ $\Psi = \Psi^+ (= \gamma)$ Majorana (real) fermion! interchanging vortices \implies braid groups, non-Abelian statistics

Quantum spin Hall effect (Z₂ top. Insulator) Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

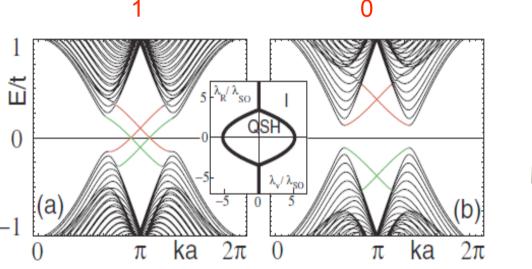
- Time-reversal invariant band insulator
- Strong spin-orbit interaction $\lambda \vec{L} \cdot \vec{\sigma}$
- Gapless helical edge mode (Kramers pair)



• Quantum spin Hall insulator is characterized by Z_2 topological index v

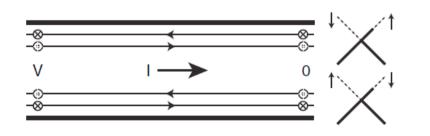
v = 1 an odd number of helical edge modes; Z_2 topological insulator

v = 0 an even (0) number of helical edge modes



of a pair of zeros of $Pf\left[\left\langle u_{i}\left(\vec{k}\right)is_{y} \middle| u_{j}\left(\vec{k}\right)^{*}\right]\right]$

Kane-Mele model graphene + SOI [PRL 95, 146802 (2005)]



Quantum spin Hall effect σ

$$\sigma_{xy}^{s} = \frac{e}{2\pi}$$

Experiment

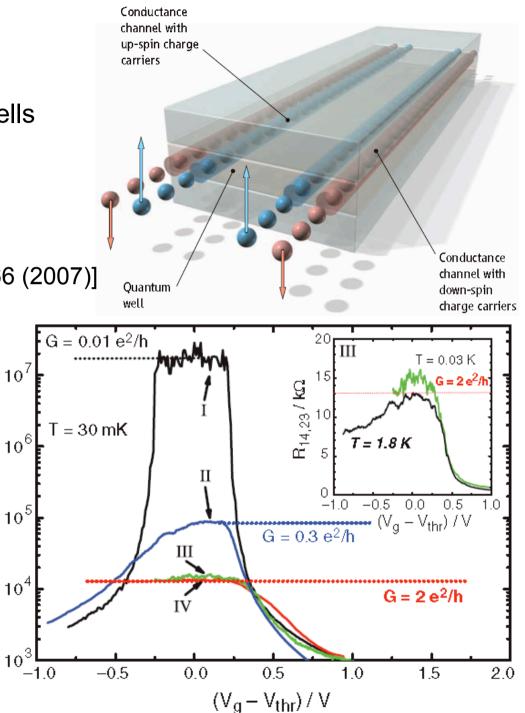
HgTe/(Hg,Cd)Te quantum wells

CdTe HgCdTe CdTe

Konig et al. [Science 318, 766 (2007)]

 $R_{14,23}/\Omega$

Fig. 4. The longitudinal fourterminal resistance, $R_{14,23}$, of various normal (d = 5.5 nm) (I) and inverted (d = 7.3 nm) (II, III, and IV) QW structures as a function of the gate voltage measured for B = 0 T at T = 30 mK. The device sizes are (20.0 \times 13.3) μm^2 for devices I and II, (1.0×1.0) μm^2 for device III, and (1.0 \times 0.5) μ m² for device IV. The inset shows $R_{14,23}(V_{\alpha})$ of two samples from the same wafer, having the same device size (III) at 30 mK (green) and 1.8 K (black) on a linear scale.



3-dimensional Z₂ topological insulator

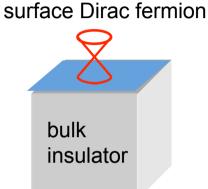
Moore & Balents; Roy; Fu, Kane & Mele (2006, 2007)

(strong) topological insulator

bulk: band insulator

surface: an odd number of surface Dirac modes

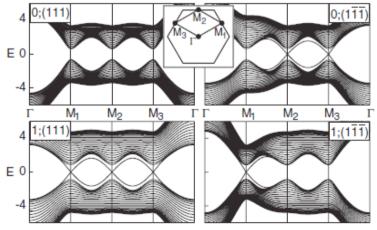
characterized by Z_2 topological numbers



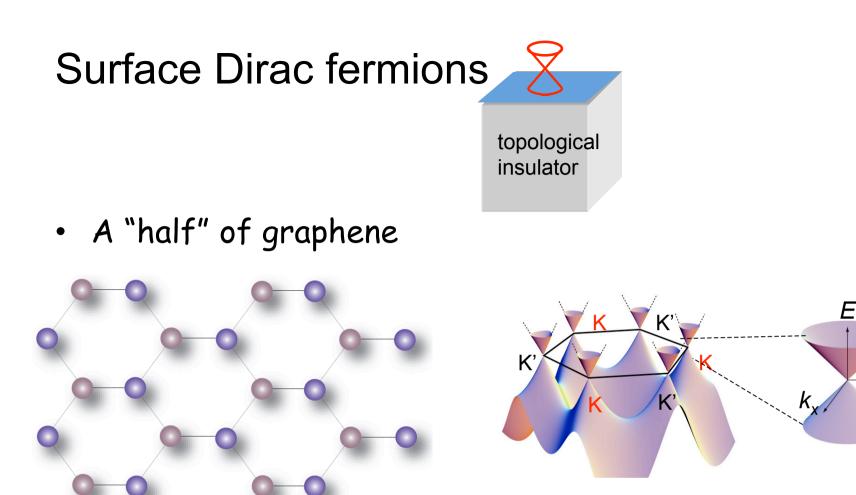
Ex: tight-binding model with SO int. on the diamond lattice [Fu, Kane, & Mele; PRL 98, 106803 (2007)]

trivial insulator

Z₂ topological insulator



trivial band insulator: 0 or an even number of surface Dirac modes



• An odd number of Dirac fermions in 2 dimensions cf. Nielsen-Ninomiya's no-go theorem

<u>k</u>y

Experiments

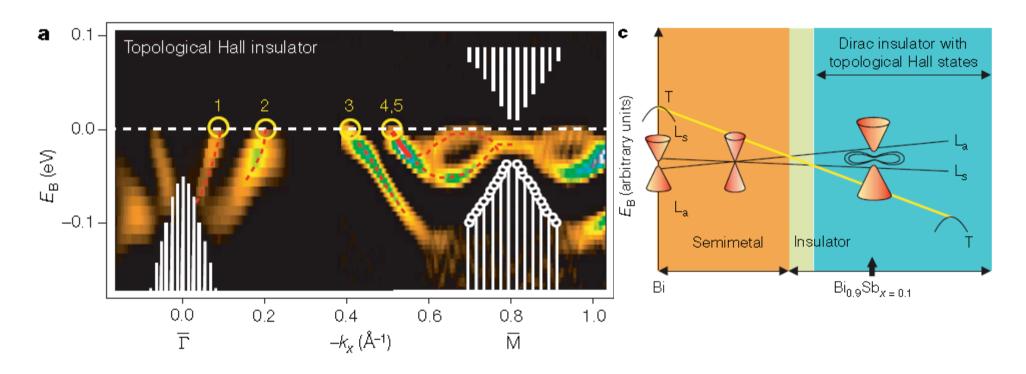
Angle-resolved photoemission spectroscopy (ARPES)

Bi_{1-x}Sb_x

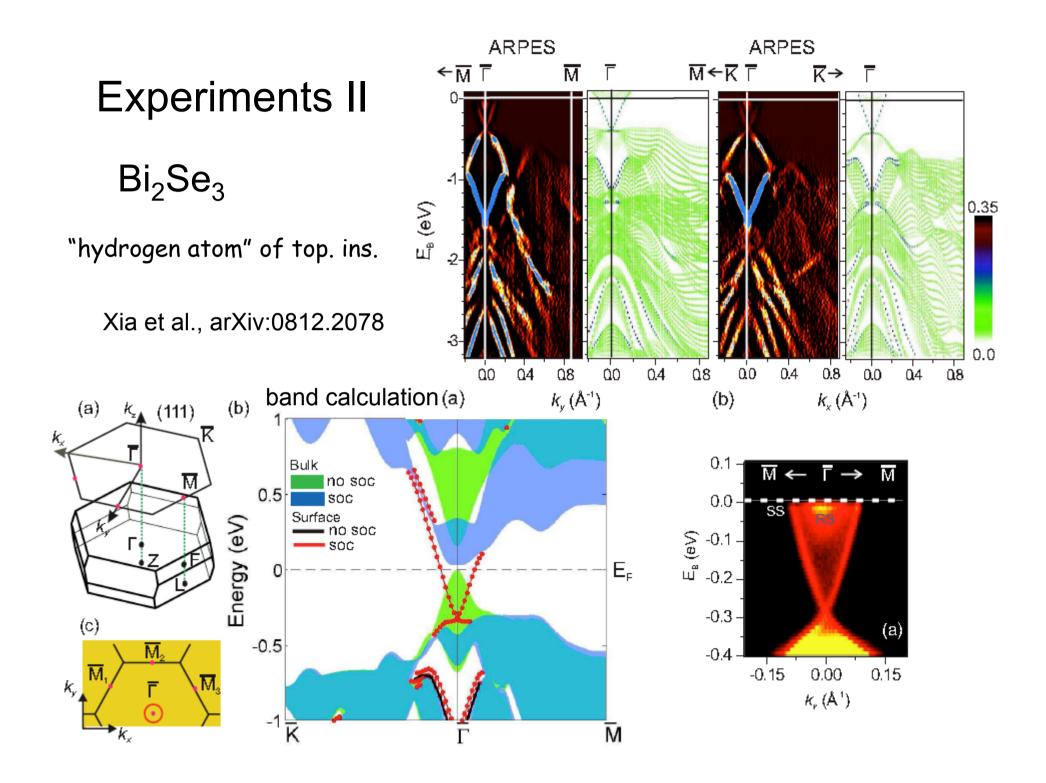
Hsieh et al., Nature 452, 970 (2008)

photon

р, Е



An odd (5) number of surface Dirac modes were observed.



Q: Are there other 3D topological insulators?

Yes!

Let's make a table of all possible topological insulators.

Classification of topological insulators

Topological insulators are stable against (weak) perturbations.

Random deformation of Hamiltonian

Natural framework: random matrix theory (Wigner, Dyson, Altland & Zirnbauer)

Assume only basic discrete symmetries:

(1) time-reversal symmetry $TH^*T^{-1} = H$ TRS = $\begin{cases}
0 & \text{no TRS} \\
+1 & \text{TRS With} = +T \text{ (integer spin)} \\
-1 & \text{TRS With} = -T \text{ (hal-odd integer spin)}
\end{cases}$

(2) particle-hole symmetry $CH^{T}C^{-1} = -H$ PHS = $\begin{bmatrix} 0 & \text{no PHS} \\ +1 & \text{PHS with} = +C & (\text{odd parity: p-wave}) \\ -1 & \text{PHS with} = -C & (\text{even parity: s-wave}) \end{bmatrix}$

(3) TRS × PHS = chiral symmetry [sublattice symmetry (SLS)] $TCH(TC)^{-1} = -H$ $3 \times 3 + 1 = 10$

10 random matrix ensembles

		TRS	PHS	SLS	description	
Wigner-Dyson	А	0	0	0	unitary IQHE	
(standard)	AI	+1	0	0	orthogonal	
	All	-1	0	0	symplectic (spin-orbit) Z ₂ TPI	
chiral (sublattice)	AIII	0	0	1	chiral unitary	
	BDI	+1	+1	1	chiral orthogonal	
	CII	-1	-1	1	chiral symplectic	
	D	0	+1	0	singlet/triplet SC MR Pfaffian	
BdG	С	0	-1	0	singlet SC	
	DIII	-1	+1	1	singlet/triplet SC with TRS	
	CI	+1	-1	1	singlet SC with TRS	

Examples of topological insulators in 2 spatial dimensions

Integer quantum Hall Effect

Z₂ topological insulator (quantum spin Hall effect) also in 3D Moore-Read Pfaffian state (spinless p+ip superconductor)

Table of topologocal insulators in 1, 2, 3 dim. Schnyder, Ryu, Furusaki & Ludwig, PRB (200

random matrix ensemble		TRS	PHS	chS		d=1	d=2	d=3
Wigner-Dyson	Α	0	0	0	unitary	0	$\mathbf{Z}^{(a)}$	0
(standard)	AI	+1	0	0	orthogonal	0	0	0
	AII	-1	0	0	symplectic	0	$\mathbf{Z}_{2}^{(b)}$	$\mathbf{Z}_{2}^{\;(c)}$
Chiral	AIII	0	0	1	chiral unitary	Z	0	Z
(sublattice)	BDI	+1	+1	1	chiral orthogonal	Z	0	0
	CII	-1	-1	1	chiral symplectic	Z	0	\mathbf{Z}_2
	D	0	+1	0	(triplet) SC	\mathbf{Z}_2	$\mathbf{Z}^{(d)}$	0
BdG	С	0	-1	0	singlet SC	0	$\mathbf{Z}^{(e)}$	0
	DIII	-1	+1	1	triplet SC	\mathbf{Z}_2	$\mathbf{Z}_{2}^{(f)}$	$\mathbf{Z}^{(g)}$
	CI	+1	-1	1	singlet SC	0	0	Z

Examples:

(a)Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,

(c) $3d Z_2$ Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore (e)Chiral d-wave $(d_{x^2-y^2}+id_{xy})$ superconducto $(p_x+ip_y)_{\uparrow} \otimes (p_x-ip_y)_{\downarrow}$ superconducto (g) ³He B phase.

Reordered Table

Kitaev, arXiv:0901.2686

	TRS	PHS	chS		d=1	d=2	d=3	
Α	0	0	0	unitary	0	Z	0	complex
AIII	0	0	1	chiral unitary	Z	0	Ζ	K-theory
AI	+1	0	0	orthogonal	0	0	0	
BDI	+1	+1	1	chiral orthogonal	Z	0	0	
D	0	+1	0	(triplet) SC	\mathbf{Z}_2	Ζ	0	
DIII	-1	+1	1	triplet SC	\mathbf{Z}_2	\mathbf{Z}_2	Ζ	real
AII	-1	0	0	${f symplectic}$	0	\mathbf{Z}_2	\mathbf{Z}_2	K-theory
CII	-1	-1	1	chiral symplectic	Z	0	\mathbf{Z}_2	
C	0	-1	0	${ m singlet} \ { m SC}$	0	Ζ	0	
CI	+1	-1	1	singlet SC	0	0	Z	

Bott periodicity:

Periodic table for topological insulators

Classification in any dimension

 $\tilde{K}^{n+2}_{\mathbb{C}}(X) \cong \tilde{K}^n_{\mathbb{C}}(X)$ $\tilde{K}^{n+8}_{\mathbb{R}}(X) \cong \tilde{K}^n_{\mathbb{R}}(X)$

Summary

• Many topological insulators of non-interacting fermions have been found.

interacting fermions??

- Gapless boundary modes (Dirac or Majorana) stable against any (weak) perturbation disorder
- Majorana fermions

to be found experimentally in solid-state devices