

Theoretical Science Colloquium Okochi Memorial Hall, Riken, May 31, 2013

Quantum Leap: Scientists Teleport Bits of Light

By <u>Clara Moskowitz</u> Published April 14, 2011

SCIENCE

Quantum information processing for coherent communication

Akira Furusawa

Department of Applied Physics, The University of Tokyo

Collaborators

- A. Furusawa Univ. of Tokyo
- H. Yonezawa, J. Yoshikawa,
- S. Takeda, S. Yokoyama, K. Miyata, K. Makino, M. Fuwa,
- C. Sornphiphatphong, H. Ogawa, T. Kaji, Y. Hashimoto,
- H. Odan, S. Toba, T. Serikawa, S. Suzuki,
- S. C. Armstrong (ANU), G. Masada (Tamagawa)

P. van Loock (Mainz), R. Filip (Palacky), L. Mista (Palacky),P. Marek (Palacky), J. L. O'Brien (Bristol), A. Politi (UCSB),E. H. Huntington (ADFA), T. Ralph (UQ), H. Wiseman (GU),N. Menicucci (Sydney)

Physical process of

Information processing

encoding in physical systems

state transformation of physical systems

Capacitor voltage $0: V < V_S$ $1: V > V_S$

Physical process of

Quantum information processing

Coherent communication and Quantum information processing

AM and FM signals

Frequency (phase) modulation

AM and FM signals

AM and FM signals

Frequency (phase) modulation

Quantum optics

An example of quantum version of coherent communication

M. Sasaki et al., Phys. Lett. A 236, 1 (1997)

Coherent communication

Shannon limit

We have to handle cat states of light!!

$$N_{\alpha}(|\alpha\rangle - |-\alpha\rangle) \stackrel{\text{odd}}{}_{\text{photons}}$$
$$N_{\alpha}(|\alpha\rangle + |-\alpha\rangle) \stackrel{\text{even}}{}_{\text{photons}}$$

K. Wakui et al., Opt. Exp. 15, 3568 (2007)

H. Takahashi et al., Phys. Rev. Lett. 101, 233605 (2008)

First step of teleportation based QIP for coherent states

Teleportation of a Schrödinger cat state of light

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

SCIENCE

Quantum Leap: Scientists Teleport Bits of Light

MABC News

Scientists teleport Schrodinger's cat

By Carl Holm for ABC Science Online

Updated Fri Apr 15, 2011 12:13pm AEST

16.05.2011 20:50 Ученые из Японии телепортировали запутанный квант Автор: Сергей Мингажев

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

Physical process of

Quantum information processing

What is quantum teleportation?

Quantum entanglement

Einstein-Podlsky-Rosen (EPR) paradox

Quantum teleportation

Creation of optical entanglement

creation of entanglement

B

A
$$\hat{x}_{A} - \hat{x}_{B} \rightarrow 0$$

 $\hat{p}_{A} + \hat{p}_{B} \rightarrow 0$
M signal = \hat{x}

 $AM signal = \hat{x}$ $FM signal = \hat{p}$

Particle

Optical parametric oscillator (OPO)

entanglement generation with squeezed light beams

Teleportation of a Schrödinger cat state of light

K. Wakui, H. Takahashi, A. Furusawa, M. Sasaki, Opt. Exp. 15, 3568 (2007)

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, A. Furusawa, Phys. Rev. A 74, 060101(R) (2006)

Teleportation of Schrödinger cats

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

Teleportation of a Schrödinger cat state of light

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

Gate teleportation

High-fidelity universal squeezers QND gate One-way quantum information processing with a QND gate

High-fidelity universal squeezer

High-fidelity universal squeezer with measurement and feedforward

R. Filip, P. Marek, and U. L. Andersen, Phys. Rev. A 71, 042308 (2005)

Output of High-fidelity squeezer ancilla: -5dB of squeezing

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, Phys. Rev. A 76, 060301(R) (2007).

$$\hat{U}_{\text{QND}} = e^{-i2G\hat{x}_1\hat{p}_2}$$

Quantum Non-Demolition (QND) interaction

$$\hat{U}_{QND}^{-1} \hat{x}_1 \hat{U}_{QND} = \hat{x}_1$$

$$\hat{U}_{QND}^{-1} \hat{x}_2 \hat{U}_{QND} = \hat{x}_2 + G \hat{x}_1$$

$$\hat{U}_{QND}^{-1} \hat{p}_1 \hat{U}_{QND} = \hat{p}_1 - G \hat{p}_2$$

$$\hat{U}_{QND}^{-1} \hat{p}_2 \hat{U}_{QND} = \hat{p}_2$$
BS
BS
SQZ
R
BS

QND gate

QND interaction with universal squeezers

Experimental results

One-way QIP with an entangling QND gate

Y. Miwa, J. Yoshikawa, P. van Loock and A. Furusawa, Phys. Rev. A 80, 050303(R) (2009)

One-way quantum computing with an entangling QND gate

Teleportation of time-bin qubits with a CV teleporter

Deterministic teleportation of optical qubits

Hybrid quantum information processing

$$\frac{Schrödinger \ cat \ states}{|0\rangle: N_{\alpha}(|\alpha\rangle - |-\alpha\rangle)} \stackrel{\text{odd}}{\underset{\text{photons}}{\text{odd}}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\stackrel{(1)}{\xrightarrow{}}}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\underset{\alpha}{\xrightarrow{}} \stackrel{\text{w(x,p)}}{\underset{\alpha}{\underset{\alpha}{\xrightarrow{}} \stackrel{w$$

H. Takahashi et al., Phys. Rev. Lett. 101, 233605 (2008)

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, Phys. Rev. A 87, 043803 (2013)

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, & A. Furusawa, Science 332, 330 (2011)

Realization of on-demand single-photon source

Quantum memory

K. Makino, J. Yoshikawa, S. Kurata, P. van Loock, and A. Furusawa, FiO2012, FTh1C.3

Schrödinger cat state A bigger cat!

without any correction!!

M. Yukawa et al., Optics Express 21, 5529 (2013)

