Spatial specificity of the enhanced dip inherently induced by prolonged oxygen consumption in cat visual cortex: Implication for columnar resolution functional MRI

Mitsuhiro Fukuda,a Ping Wang,a Chan-Hong Moon,a Manabu Tanifuji,b and Seong-Gi Kim,a,*

aBrain Imaging Research Center, Department of Neurobiology, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA 15203, USA
bLaboratory for Integrative Neural Systems, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-ohi, Saitama 351-0198, Japan

Received 22 December 2004; revised 13 July 2005; accepted 15 September 2005
Available online 27 October 2005

Since changes in oxygen consumption induced by active neurons are specific to cortical columns, the small and transient "dip" of deoxyhemoglobin signal, which indicates an increase in oxygen consumption, has been of great interest. In this study, we succeeded in enhancing and sustaining the dip in the deoxyhemoglobin-weighted 620-nm intrinsic optical imaging signals from a 10-s orientation-selective stimulation in cat visual cortex by reducing arterial blood pressure with sodium nitroprusside (a vasodilator) to mitigate the contribution of stimulus-induced blood supply. During this condition, intact spiking activity and a significant reduction of stimulus-induced blood volume changes (570-nm intrinsic signals) were confirmed. The deoxyhemoglobin signal from the prolonged dip was highly localized to iso-orientation domains only during the initial ~2 s; the signal specificity weakened over time although the domains were still resolvable after 2 s. The most plausible explanation for this time-dependent spatial specificity is that deoxyhemoglobin induced by oxygen consumption drains from active sites, where spiking activity occurs, to spatially non-specific downstream vessels over time. Our results suggest that the draining effect of pial and intracortical veins in dHb-based imaging techniques, such as blood oxygenation-level dependent (BOLD) functional MRI, is intrinsically unavoidable and reduces its spatial specificity of dHb signal regardless of whether the stimulus-induced blood supply is spatially specific.

© 2005 Elsevier Inc. All rights reserved.

Keywords: BOLD; Brain mapping; CBF; CBV; Hemodynamic response; Hypotension; Sodium nitroprusside; Intrinsic signal; Optical imaging; Ocular dominance column; Orientation column

Introduction

Non-invasive mapping of functional cortical columns with common neural properties is critical to understanding how the brain works. Since neural activity induces a focal increase in glucose and oxygen consumption rates, the metabolic response is supposed to be localized to the active site (Lowel et al., 1987; Thompson et al., 2003; Woolsey et al., 1996). Therefore, focal increases of deoxyhemoglobin (dHb) produced by the oxygen consumption change may precisely indicate the location of neural active sites. This expectation was confirmed with intrinsic optical imaging spectroscopy studies (Malonek and Grinvald, 1996), which showed that the early increase of dHb signal (referred to as the "dip", i.e., metabolic response) is better localized to orientation-selective columns in the cat visual cortex than the late decrease of dHb signal due to an over-compensation of cerebral blood flow (CBF). Similarly, cortical columns in the cat visual cortex were successfully mapped only by the early dip in blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI (Ogawa et al., 1990)) but not by late responses at high magnetic fields (Kim et al., 2000a). Thus, the early dip has been of great interest to the functional imaging community (Hennig et al., 1994; Hu et al., 1997; Menon et al., 1995).

However, due to the small and transient nature of the early negative BOLD dip (Buxton, 2001; Duong et al., 2000a; Jezzard et al., 1997; Kim et al., 2000b; Logothetis, 2000) and consequently the low signal-to-noise ratio (SNR), it is difficult to routinely map sub-millimeter-scale functional columns from this dip. Alternatively, brain activity has been commonly mapped from the positive BOLD signal, which indicates a decrease in dHb (i.e., an over-compensated hemodynamic response), although the spatial specificity of this signal is poor compared to metabolic response. The poor spatial specificity of the late dHb responses (positive BOLD) can be explained by two hypotheses: (I) widespread CBF and cerebral blood volume (CBV) responses beyond the site of spiking
activity (Malonek and Grinvald, 1996) and (II) draining of dHb from the active site to non-specific downstream vessels (Duong et al., 2000a). Under normal physiological conditions, the increased oxyhemoglobin supply (i.e., CBF increase) and dHb drain occur simultaneously, making separation non-trivial. In order to decouple these two hypotheses, we propose to modulate the CBF and CBV responses induced by neural activity but without changing neural activity and oxygen consumption rates.

In this paper, the spatial specificity of dHb signals to iso-orientation columns is investigated in the absence of evoked CBF and CBV responses (i.e., conditions matching those of the early dip); these studies were performed in cat visual cortex by using optical imaging of intrinsic signals (OIS), which measures changes in light reflection from the cortical surface (Blasdel and Salama, 1986; Grinvald et al., 1986) accompanied by hemodynamic response to neural activity. To this end, dHb-weighted 620-nm OIS and CBV-weighted 570-nm OIS (for review, see Bonhoeffer and Grinvald, 1996) evoked by orientation-selective gratings were measured at normal and low blood pressure (BP) induced by sodium nitroprusside (sNP). Since blood vessels are considerably dilated at low BP (Endrich et al., 1987; Kontos et al., 1978), any further increase in CBF and CBV due to visual stimulation (i.e., 570-nm OIS) will be significantly reduced. Thus, spatiotemporal dynamics of 620-nm OIS inherently induced by oxygen consumption change can be measured. If, during stimulation at low BP, the 620-nm OIS is not localized to active sites, then the spatial localization of the dHb signal is unlikely due to non-specific blood supply but rather due to the draining of dHb. This investigation will determine the intrinsic spatial specificity of dHb-based functional imaging techniques such as conventional BOLD fMRI and OIS. The companion work studied with fMRI under similar low BP conditions is reported elsewhere (Nagaoka et al., in press).

Materials and methods

Ten cats (1.3–2.0 kg, 11–19 weeks) were used in this study (8 cats for optical imaging and 2 cats for multiple-unit recording). All experimental procedures were approved by the Institutional Animal Care and Use Committee at the University of Pittsburgh.

Animal preparations and physiological conditions

Each cat was initially treated with atropine sulfate (0.05 mg/kg, sub-cutaneous injection) and anesthetized with a sub-cutaneous injection of a mixture of ketamine (20 mg/kg) and xylazine (1 mg/kg). The cat was then intubated and mechanically ventilated (1–2 min during optical imaging and for 15 min during multiple-unit recording) as follows (mean ± one standard deviation (SD)): P_{CO_2} (24.3 ± 1.9 mm Hg, $n = 9$), P_{O_2} (204.9 ± 19.1 mm Hg, $n = 8$ (the measurement could not be performed for one of the cats used for optical imaging)), and pH (7.46 ± 0.03, $n = 9$). The isoflurane concentration in a gas mixture of 70% N$_2$O and 30% O$_2$ was maintained at the same level during each set of recording for individual cats (usually 0.85–1.0%), which consisted of control (before vasodilator injection), low BP (during injection), and recovery (post-injection) conditions. The range of mean arterial blood pressure (MABP) for control was 76.1–100.9 mm Hg, and that for recovery was 81.6–105.1 mm Hg. These were within the normal range of MABP for cats under ∼1% isoflurane anesthesia (Harel et al., 2002a; Zhao et al., 2004a). The range of MABP for low BP was 40.1–55.4 mm Hg.

Sodium nitroprusside-induced low blood pressure

To reduce arterial BP, a vasodilator (sodium nitroprusside dehydrate (sNP), Abbott Laboratories, IL) was injected intravenously for ∼25 min (total amount of injection: 0.32–0.59 mg/kg). The sNP (2.5, 5.0 or 7.5 mg) was dissolved in 6 ml of either saline or a mixture of saline and Dextran 40 or 70 (Baxter, IL). The vasodilator infusion rate was dynamically adjusted (between 0.0003 ml/min (initial) and max. 0.08 ml/min to avoid cyanide toxicity) by manually controlling an infusion pump (PHD2000, Harvard Apparatus) to maintain MABP at ∼45 mm Hg for ∼25 min during optical imaging and for ∼15 min during multiple-unit recording. The initial drop in MABP tended to reach ∼40 mm Hg, and in two cases, EEG signals became flat at that period. After termination of the vasodilator injection, MABP returned to levels similar to control values (before the vasodilator injection) within ∼5 min.
Visual stimuli

All visual stimuli were presented binocularly. Square-wave high-contrast gratings were generated by a graphic video board (VSG2/5, Cambridge Research Systems, United Kingdom) controlled by a custom software written in MATLAB 6.5 (MathWorks, Inc., MA) or Microsoft Visual C++ 6.0 and were presented on a 21-in. CRT monitor (800 × 600 pixels and 100 Hz refresh rate, GDM-F520, Sony). The spatial and temporal frequencies of the gratings were 0.15 cycle (c) per degree and 2 c/second (s) respectively for selective stimulus of area 18 (Bonhoeffer et al., 1995; Issa et al., 2000). The direction of the motion of the gratings was reversed every 0.5 s during visual stimulation. The cat’s pupils were dilated with ophthalmic solutions of atropine (1%), phenylephrine hydrochloride (2.5%), and proparacaine hydrochloride (0.5%). Contact lenses (+0.0 D, Danker Laboratories Inc., FL) were fitted to the eyes to prevent corneal drying. The visual field center was roughly estimated by projecting images of optic disks and retinal vessels onto the CRT monitor (Bishop et al., 1962) whose distance was then placed where the best focus of the optic disks and the retinal vessels were obtained (19–31 cm from eyes; visual field 70°–115° wide and 54°–88° high).

Optical imaging

The intrinsic signals were recorded with a custom-made imaging system consisting of tandem lens optics (Ratzlaff and Grinvald, 1991) (i.e., face-to-face combination of a projection lens (50 mm F/1.2, Nikon, Japan) and an objective lens (50 mm F/1.2, Nikon), a charge-coupled device (CCD) camera (CS8310, 640 × 480 pixels, Tokyo Electric Industry, Japan) and a 10-bit frame grabber board (either Pulsar or Corona-II, Matrox Graphic Inc., Canada). The imaging area was 8.8 × 6.6 mm². For seven of the eight cats, the camera was focused on the cortical surface to detect vascular responses on pial vessels. The diaphragm of the projection lens was set to F/2.8 for a large depth of field. For the remaining one cat, the camera was refocused 500 μm below the cortical surface, and the diaphragm of the projection lens was set to F/1.2 for a shallow depth of field as with conventional optical imaging. Since the results obtained from both depth of field were essentially the same, both data were pooled together for analyses. Images were captured at 1/30 s with the frame grabber board controlled by custom software written in Microsoft Visual C++ 6.0. To improve SNR and also reduce data size, temporal averaging of 15 consecutive images and spatial binning of 2 × 2 pixels were performed before saving the acquired images. Thus, the final temporal and spatial resolutions of the saved images were 0.5 s/image and 27.5 × 27.5 μm²/pixel, respectively. The cortical surface was illuminated through an interference filter (540, 570, or 620 ± 10 nm, Oriel Instruments, CT) using a bifurcated fiber optic bundle (SP7733, Oriel Instruments, CT) that was connected to a tungsten–halogen light source (Model No. 66881 and 68931, Oriel Instruments, CT).

Experimental design

Experimental protocol was outlined in Table 1. In all studies, cortical surface imaging with 540-nm wavelength and four-orientation 620-nm OIS were performed. Additionally, single-orientation 620-nm and/or 570-nm OIS were measured from the same cortical surface, or multiple neural recordings were performed as follows.

Cortical surface imaging with 540 nm

Initially, an image of pial vascular pattern was taken with 540-nm wavelength, at which light absorption by hemoglobin is largest.

Four-orientation 620-nm OIS

After acquiring an image of surface vascular patterns, iso-orientation domains for a particular orientation were mapped with 620-nm OIS, which is empirically known to give excellent contrast. To obtain the iso-orientation map efficiently and quickly with the conventional cocktail blank method (described in OIS data analysis), four orientations (0°, 45°, 90°, and 135°) were used with short stimulus duration (2 s) and inter-stimulus interval (2 s). Each stimulation run consisted of 1-s of pre-stimulus homogenous gray (i.e., 2 images) and 2-s stimulus with a moving grating presented at one of the four orientations followed by 1-s of post-stimulus homogenous gray. Twenty runs were repeated for each orientation stimulus (i.e., total recording time, ~2.7 min). The four orientations were presented at a sequential order (from 0° to 45°, 90° and 135°). Based on our experience, the orientation presentation order (e.g., random or sequential presentation) does not affect iso-orientation maps in this short time recording.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Purpose</th>
<th>MABP</th>
<th>Stimulation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical surface imaging</td>
<td>Visualization of vessels</td>
<td>Normal</td>
<td>None</td>
<td>– Separation of tissue and vessel ROIs</td>
</tr>
<tr>
<td>with 540 nm</td>
<td>Mapping iso-orientation</td>
<td>Normal</td>
<td>4 orientations, 2-s</td>
<td>– “Reference” for single-condition iso-orientation maps</td>
</tr>
<tr>
<td>Four-orientation 620-nm OIS</td>
<td>domains</td>
<td>Normal</td>
<td>stimulation duration</td>
<td>– Assignment of active and inactive domains for quantitative analyses</td>
</tr>
<tr>
<td>Single-orientation 570-nm OIS</td>
<td>Spatiotemporal dynamics</td>
<td>Normal and Low</td>
<td>One orientation, 64-s ISI (49 s in one case)</td>
<td>– Determination of whether functional CBV response is decreased at low BP</td>
</tr>
<tr>
<td></td>
<td>of CBV responses</td>
<td></td>
<td>10-s stimulation</td>
<td></td>
</tr>
<tr>
<td>Single-orientation 620-nm OIS</td>
<td>Spatiotemporal dynamics</td>
<td>Normal and Low</td>
<td>One orientation, 64-s ISI</td>
<td>– Enhancement of the dip at low BP</td>
</tr>
<tr>
<td></td>
<td>of dHb responses</td>
<td></td>
<td>10-s stimulation</td>
<td>– Spatial specificity of the prolonged dip</td>
</tr>
<tr>
<td>Multiple-unit recording</td>
<td>Fidelity of neural activity</td>
<td>Normal and Low</td>
<td>4 orientations, 10-s stimulation</td>
<td>– Selectivity of neural activity during low BP</td>
</tr>
</tbody>
</table>

Table 1

Experimental design
Single-orientation 570- and 620-nm OIS

To determine contribution of CBV response or spatial specificity of dHb signal, 570-nm or 620-nm OIS induced by 10-s visual stimulation were recorded during normal and low BP conditions respectively (n = 5 cats for each wavelength, 2 of them for both wavelengths). The 10-s stimulation duration is relevant to typical block-design fMRI studies. To achieve efficient signal averaging in a limited experimental time during the low BP, only single orientation (0°, 45°, 90°, or 135°) was presented. Twenty single-orientation stimulation runs were continuously acquired at each of normal BP, low BP, and recovery sessions; each run consisted of 10 s of pre-stimulus stationary grating and a 10-s moving grating followed by 54 s (39 s for one 570-nm OIS) of post-stimulus stationary grating to allow the signals to return to pre-stimulus baseline (i.e., inter-stimulus interval was 64 or 49 s). Since results obtained from the two stationary grating periods (64 and 49 s) were essentially the same, both data were pooled together for analyses. For low BP sessions, OIS recordings were started after the MABP reached a desired level (~45 mm Hg). One hour after termination of vasodilator injections, the recovery of the signals was confirmed.

Multiple-unit recording

Spiking activity of multiple neurons was recorded extracellularly from single tungsten microelectrodes (Catalog #U42LFFLMNNIE, Frederick Haer and Co. Brunswick, ME) during control (normal BP), low BP, and recovery conditions. The electrode was inserted using a hydraulic microdrive (Narishige MO-81, Japan) into an iso-orientation domain pre-determined with the Four-orientation 620-nm OIS recording. The spikes whose amplitudes exceeded a certain threshold, which was set near background activity, were detected at 40 kHz using a spike acquisition system (Plexon Inc, Dallas, Texas). Stimulus consisted of a 2-s homogeneous gray and a 10-s duration moving grating with one of four orientations (0°, 45°, 90°, and 135°) followed by 3-s homogenous gray. For each orientation stimulus, five runs were averaged and spike firing rates in 100-ms bins during stimulation were calculated to determine the selectivity of multiple neurons recorded.

OIS data analysis

All data were analyzed with MATLAB 6.5. After averaging across stimulation runs for each experiment, three sorts of maps (single-condition raw activity, differential iso-orientation, and single-condition iso-orientation maps) were generated as described in detail below. All the values below are reported as mean ± 1 SD. Statistical significance was examined by ANOVA and two-tailed paired \(t \) test. \(P \) values of less than 0.05 were considered to be statistically significant.

Averaging across stimulation runs

To increase SNR, OIS runs were averaged. For the experiment of Four-orientation 620-nm OIS, all 20 OIS runs (4 s/each run; 1-s pre-stimulus and 3-s post-stimulus onset) were averaged for each orientation. For the experiment of Single-orientation 570 and 620-nm OIS, OIS runs were first choppied into a period of 40 s (10-s pre-stimulus and 30-s post-stimulus onset) and screened based on MABP during each 40-s run before averaging. To obtain the MABP during each run, MABP at every cardiac cycle was calculated from the sum of two-thirds of diastolic BP and one-third of systolic BP, and all the MABP for 40 s were averaged. Then one SD of the mean for MABPs across 20 runs (15 runs for low BP sessions, the first five runs were excluded from analyses because the reflected light intensity was not yet stable (see Fig. 2B right panel)) was calculated. Finally, OIS runs whose MABP were within a range of the one SD were averaged. At each BP condition, one averaged run was determined.

Generating single-condition raw activity maps

Then the first frame analysis (for review, see Bonhoeffer and Grinvald, 1996) was performed on the averaged run to reduce the contribution of slow signal fluctuations related with vasomotion (e.g., ~0.1 Hz (Mayhew et al., 1996)) to OIS time courses; the average of two images (i.e., 1 s) just before stimulus onset (pre-stimulus image, \(R \)) was subtracted from all images (\(R(t) \), is time from the stimulus onset). The subtraction images (\(\Delta R = R(t) - R \)) were then divided by the pre-stimulus image (\(R \)), so that the pixel values indicate a relative change of reflectance (\(\Delta R/R \); 0, no change of light reflection; – (negative sign), decrease of light reflection (i.e., increase of light absorption); + (positive sign), increase of light reflection (i.e., decrease of light absorption)). This first frame analysis was applied to both the Four-orientation 620-nm OIS and Single-orientation 570 and 620-nm OIS experiments; it is equivalent to a percentage signal change induced by stimulation, which is commonly used in functional MRI. The image generated by the first fame analysis is referred to as a “single-condition raw activity map” (Fig. 1B). All images in the Results section are shown as gray-scale code, where brightness of gray shows intensity of light reflection from pre-stimulus baseline (i.e., darkening and lightening represent decrease and increase in light reflection, respectively).

Generating differential iso-orientation maps

As seen in the single-condition raw activity map (Fig. 1B) or in the map profile (Fig. 1C), OIS is induced not only in the domain specific to a particular orientation but also in all other domains for other orientations, resulting in orientation-specific and -non-specific components (see also Frostig et al., 1990; Grinvald et al., 1986; Malonek and Grinvald, 1996). To remove the orientation-non-specific component and to quantitatively determine iso-orientation domains specific to a particular orientation, we used the cocktail blank data analysis method, which is commonly used to generate iso-orientation maps (for review, see Bonhoeffer and Grinvald, 1996). To this end, first, single-condition raw activity maps for the four orientations (0°, 45°, 90°, and 135°) were obtained from the experiment of Four-orientation 620-nm OIS (i.e., 4-s recording for each orientation). Each map was averaged from 0.5 to 3 s after the stimulus onset (the image at 0 s was not included in the average because the signal did not emerge clearly) to increase SNR. Then the resulting four single-condition raw activity maps were averaged to generate a cocktail blank image. Finally, the cocktail blank image was subtracted from the raw activity map with one of the four orientations, and the spatial filter (Fig. 1D) was applied (see below). We will refer to the generated map as a “differential iso-orientation map” (Fig. 1F). This map was used to quantitatively determine iso-orientation domains (see ROI analysis).

Generating single-condition iso-orientation maps

The local modulations specific to a particular orientation (orientation-specific component) can also be extracted from global modulations, which are independent of stimulus orientation
To determine spatiotemporal responses induced by a stimulus with a single-orientation, “tissue” and “vessel” regions were chosen (Fig. 1G); the separation between tissue and vessel regions was determined on the cortical surface image taken at 540 nm (see Fig. 1A). Since vessels absorb more light than tissue at this wavelength, vessels appear dark in cortical surface images at 540 nm. Pixels containing signal from pial vessels (a pixel size was 27.5 × 27.5 μm²) were assigned to the vessel region of interest (ROI), and the remaining pixels were the tissue ROI (Fig. 1G). The ratio of vessel ROI to tissue ROI was 0.67 ± 0.06 (n = 7 cats). In one cat, due to blurring of pial vessels caused by defocusing camera from cortical surface, the vessel ROI was larger than tissue ROI (the ratio was 1.96), however, this does not affect the result. Tissue ROI was further sub-divided into “active” and “inactive” domains based on the differential iso-orientation map. The pixels having negative values (−ΔR/R%) in the differential iso-orientation map (Fig. 1F) were assigned to active domains, and the remaining pixels (0% and +ΔR/R%) were assigned to inactive domains (Fig. 1H). The ratio of active domains to inactive domains was 0.76 ± 0.20 (n = 8 cats). Average time courses were plotted from all pixels within each ROI (i.e., vessel, tissue, active, and inactive domains) in the single-condition raw activity maps.

Results

Effects of sNP administration on arterial blood pressure and cortical reflected light intensity

A decrease in arterial blood pressure (BP) causes an increase in CBV to keep CBF rather constant (i.e., autoregulation). Thus, the increase in light absorption (decrease in reflected light) induced by the decrease in CBV is expected at low BP. To test this prediction, 570-nm reflected light intensities between normal and low BP were compared. Fig. 2 shows continuous recordings of arterial BP (A) and cortical reflected light at 570-nm wavelength (B) during normal BP (left panel) and during low BP, induced by sNP injection (right panel). The sNP reduced MABP, systolic and diastolic blood pressure, and also pulse pressure (difference between systolic and diastolic blood pressures) (compare left and right panels of Fig. 2A and insets). Target MABP during sNP injections was at ~45 mm Hg (right panel of Fig. 2A), which may be slightly below the lower limit of CBF autoregulation (Chillón and Baumbach, 2002). Under this condition, vessels are considerably dilated (Kontos et al., 1978), and thus CBV (Schumann-Bard et al., 2005) and total hemoglobin (Ferrari et al., 1992) are increased. In accordance with our expectation, the reflected light intensity gradually decreased from ~800 arbitrary units during normal BP to ~700 units during low BP (Fig. 2B).

To quantitatively compare properties of reflected light between the two BP conditions, mean of the reflected light intensity for a 10-s pre-stimulus period was calculated for each of the selected runs (see OIS data analysis in Materials and methods) for both BP conditions. The mean reflected light intensity of 570-nm wavelength during low BP (MABP, 48.3 ± 5.8 mm Hg) for all five cats was 8.0 ± 6.7% less than that during normal BP (MABP, 81.2 ± 5.0 mm Hg). Similarly, the average reflected light intensity at 620 nm during low BP (MABP, 48.1 ± 3.3 mm Hg) for all five cats was reduced by 2.2 ± 1.5%, compared to that with normal BP (MABP, 82.1 ± 3.3 mm Hg). The decreases in reflected light intensity were
statistically significant ($P = 0.046$ for 570 nm and 0.029 for 620 nm). This indicates an increase in CBV induced by the decrease of blood pressure.

The reduction of MABP also lessened the fluctuation in the reflected light intensity. As shown in Fig. 2B, the trace of reflected light intensity during normal BP appeared noisy compared to that for low BP. To quantify the fluctuation within a run, one SD of the reflected light intensity for a 10-s post-stimulus period (SD) was divided by the mean of reflected light intensity (SD/mean). The average SD/mean for 570-nm wavelength at low BP ($0.14 \pm 0.12\%$, $n = 5$ cats) was significantly smaller ($P = 0.012$) than that at normal BP ($0.74 \pm 0.40\%$). Similarly, the average SD/mean for 620-nm wavelength at low BP ($0.06 \pm 0.02\%$, $n = 5$ cats) was significantly smaller ($P = 0.002$) than that at normal BP ($0.10 \pm 0.03\%$). Since this signal fluctuation is significantly reduced during the low BP condition, smaller stimulation-induced signal changes should be detectable.

Reduction of the stimulus-induced CBV changes during low arterial blood pressure

To evaluate whether the low BP condition can also mitigate the contribution of stimulus-induced CBV changes to OIS, we recorded light reflection changes induced by visual stimulation with 570-nm wavelength (i.e., 570-nm OIS) during both BP conditions. A decrease in light reflection at 570 nm as shown in single-run traces of Fig. 2B inset was observed for every visual stimulus during normal BP (Fig. 2B left), but the signal changes almost disappeared during the low BP condition (Fig. 2B right). This observation was preserved even after averaging all selected runs (Figs. 3A–F, the same cat as Fig. 2). Cortical surface vessels within the ROI are clearly visible during both BP conditions and are dilated for low BP, as can be seen in the pre-stimulus baseline images of Figs. 3A and B. Visual stimulation induced a decrease in light reflection (i.e., a darkening of the cortical images) over the entire ROI as shown in the “single-condition raw activity map” (see OIS data analysis in Materials and methods) of Fig. 3C for normal BP (MABP, 76.1 ± 0.6 mm Hg, average for 17 runs). These global reflection changes almost disappeared in the activity map for low BP (MABP, 45.5 ± 1.8 mm Hg, average for 12 runs) (Fig. 3D). In accordance with the activity maps, the light reflection change induced by stimulation within both tissue and pial vessel regions (see ROI analysis in Materials and methods) was maximum $\sim 2\%$ for normal BP (Fig. 3E) but was maximum $\sim 0.05\%$ for low BP condition in their time courses (note that the vertical scale in Fig. 3F is ten times smaller than that in Fig. 3E). The reduction of signal reached $\sim 90\%$ after 4 s from the stimulus onset (Fig. 3F inset). This signal reduction during low BP was consistently observed across all five cats (Fig. 3G).

To quantitatively compare the magnitude of the 570-nm OIS between normal and low BP conditions, we separately averaged the reflection changes in the regions of tissue and pial vessels...
during 10-s stimulation (from 0.5 s to 10 s after the stimulus onset, 0 s was not included because the signal did not emerge clearly) for each cat (Fig. 3H). Result with two-way repeated measures ANOVA indicated that the difference between magnitudes of reflection change from tissue vs. pial vessels was not statistically significant (\(F_{1,16} = 0.007, P = 0.936\)), while the magnitude difference between normal and low BP was statistically significant (\(F_{1,16} = 43.604, P < 6.07 \times 10^{-6}\)). The average magnitude of the 570-nm OIS from tissue for all five cats significantly decreased (\(P = 0.004\)) during the low BP conditions (\(\Delta R/R, -0.14 \pm 0.09\%\); MABP, 48.3 \(\pm\) 5.8 mm Hg) compared to that with normal BP (\(\Delta R/R, -0.95 \pm 0.35\%\); MABP, 81.2 \(\pm\) 5.0 mm Hg), and recovered to a similar magnitude when MABP returned to normal (\(\Delta R/R, -1.33 \pm 0.40\%\); MABP, 88.7 \(\pm\) 8.0 mm Hg). Thus, the average 570-nm OIS reduction at low BP was 85.8 \(\pm\) 6.1\% (\(n = 5\) cats). A statistically significant reduction of reflection changes was similarly observed in pial vessels (\(\Delta R/R, -1.02 \pm 0.45\%\) at normal BP; \(\Delta R/R, -0.09 \pm 0.08\%\) at low BP, \(P = 0.008\)). As shown in the time
courses of signal reduction rates (Fig. 3H inset), a similar reduction of the signals was mainly observed in later time points (4–10 s from the stimulus onset). These results are consistent with our expectation that the 570-nm OIS would be considerably reduced by decreasing the BP. This suggests that the 570-nm OIS is predominantly derived from changes in total hemoglobin content (i.e., CBV) as has generally been assumed (for review, see Bonhoeffer and Grinvald, 1996), and thus stimulus-induced CBV changes were greatly reduced under low BP conditions.

Preservation of neural activity during low arterial blood pressure

The reduction of stimulus-induced CBV during low BP is due to a loss of vasodilation capacity or a decrease of neural activity. To test whether a decrease in neural activity is the major source of reduced evoked CBV responses, multiple-spiking activities of neurons were recorded in two cats. Fig. 4A shows examples of spike firing rates of multiple neurons for a 10-s visual stimulation periods during normal (left panel) and low BP (right panel) conditions. Although spiking activity from multiple neurons transiently disappeared for the initial few minutes after the MABP reduction, the activity recovered to the pre-infusion levels. The initial loss of neural activity may be related to hypotension ischemia (Sato et al., 1984) rather than direct sNP effects (see Discussion); an initial drop of MABP to ~40 mm Hg may extremely slow down or stop local blood perfusion at that period. This would cause a decrease in oxygen tension in tissue, leading to a decrease of cerebral metabolic rate of oxygen consumption (CMRO₂). Spiking activity only disappeared during initial MABP of ~40 mm Hg period and recovered when MABP returned to ~45 mm Hg (Fig. 4A). If sNP itself affected spiking activity, the activity would not be recovered during sNP administration. This initial deactivation (~5 min) may also be related with the initial unstable light reflectance (see Fig. 2C).

To quantitatively compare the magnitude and selectivity of neural activity between normal BP (control) and low BP conditions, the average spike frequency during 10-s stimulation for 5 runs was calculated for each orientation (0°, 45°, 90°, and 135°) for both BP conditions. As shown in Fig. 4B, orientation tuning at low BP (red lines) was essentially the same as that in normal BP (blue lines). Furthermore, average dynamics of the spike firing rates at preferred and anti-preferred (i.e., orthogonal to the preferred) orientation was similar between two BP conditions (Fig. 4C, MABP, 95.7 ± 9.0 mm Hg (normal) vs. 47.5 ± 3.2 mm Hg (low), n = 4 sites). These data show that neural activity does not change between normal and low BP conditions, and therefore, the significant reduction of 570-nm OIS we observed during low BP conditions is not due to a decrease of neural spiking activity.

Fig. 4. Preservation of neural activity during low BP. (A) Example of spike activity of multiple neurons induced by a 10-s visual stimulation during normal (left panels) and low BP (right panels); MABP (upper), spike firing rates in 100-ms bins (lower). The period of sNP injection is indicated by the horizontal black bar in the right upper panel. Vertical ticks below the lower traces represent stimulus onset for each run. Runs recorded at the preferred orientation are indicated by red ticks. (B) Orientation tuning curves of all recorded neurons (n = 2 cats). Blue and red lines represent the average for 5 runs at normal and low BP, respectively. MABP at each run was determined by averaging the values for 15 s (from 2 s pre-stimulus to 13 s after stimulus onset), yielding normal/low MABP (mm Hg) average values for 5 runs of (a) 100.9 ± 2.1/52.2 ± 2.2, (b) 98.7 ± 1.8/44.9 ± 2.9, (c) 82.3 ± 1.2/46.6 ± 2.1, (d) 100.7 ± 1.8/46.8 ± 2.1. Iso-contours indicate the same firing rates (spikes/s). The center is 0 spike/s. The inner iso-contour firing rate can be obtained by dividing the given firing rate by the number of contours. Neurons a and b were recorded from the same penetration track in one cat (500 µm and 300 µm below the cortical surface, respectively). Neurons c and d were recorded at two different penetration sites from another cat (both recorded at 300 µm). Activity shown in panel A is neuron c. (C) Peri-stimulus time histograms in 100-ms bins during normal (blue) and low (red) BP conditions with 10-s visual stimulation, where spike firing rates at preferred (upper panel) and orthogonal (lower panel) orientations for neurons at 4 different sites (a–d in panel B) were averaged.
Enhancement of the dip during low arterial blood pressure

The reduction of CBF and CBV at low BP without a concomitant decrease of neural activity will cause dHb increase to be sustained during stimulation. Thus, the dip in the dHb-weighted 620-nm OIS at low BP is expected to continue during the entire 10-s stimulation period, unlike the 620-nm OIS at normal BP.

Typical spatiotemporal responses of the 620-nm OIS for 10-s stimulation at normal and low BP from one cat are shown as single-condition raw activity maps in Figs. 5A and B, respectively, and as the average time courses from tissue and pial vessels in Fig. 5C. During the normal BP condition (MABP, 81.5 ± 3.8 mm Hg, average for 12 runs), decreases of light reflection induced by visual stimulation were highly localized to patches within ~2 s after the stimulus onset (see 1.5 s in Fig. 5A) which is consistent with the previous reports (Grinvald et al., 2000; Malonék and Grinvald, 1996). Afterwards, they quickly spread throughout the cortex (see darkening of the cortical image in the panel of 5.0 s), followed (at normal BP) by a global increase of light reflection (see lightening of the cortex in the panel of 10.0 s). The biphasic time course of the 620-nm OIS at normal BP (blue lines in Fig. 5C) suggests that dHb contents initially increase due to increases in oxygen consumption by active neurons (Vanzetta and Grinvald, 1999; but see Lindauer et al., 2001), then later decrease due to over-compensation of CBF (Fox and Raichle, 1986). Both tissue and pial vessels behaved similarly at normal BP over the entire time course, and results were consistent in all 5 cats (Fig. 5D). During the low BP conditions (MABP: 51.4 ± 1.4 mm Hg, average for 11 runs), light reflection decreased at 1.5 and 5.0 s (Fig. 5B), similar to normal BP conditions, but a continuing decrease in light reflection (i.e., a prolonged dip) was observed over the cortical region during the entire stimulation period (see 10.0 s in Fig. 5B). The monophasic time courses were observed similarly in both tissue and pial vessels (red lines in Fig. 5C). This was consistent across all five cats (Fig. 5D). The result suggests that a prolonged increase in dHb content is detectable at low BP because the sustained increase in oxygen metabolism is not compensated by further increases in oxygen supply due to CBF and CBV changes (Offenhauser et al., 2005).

To quantitatively compare the dHb signals between normal and low BP conditions, the maximum magnitude of the dip during the 10-s stimulation was determined (time for maximum tissue signal was chosen for both tissue and pial vessels). Result with two-way repeated measures ANOVA indicated that the difference between magnitudes of reflection changes from tissue vs. pial vessels was...
not statistically significant \((F_{1,16} = 0.646, P = 0.433)\), while the magnitude difference between normal and low BP was statistically significant \((F_{1,16} = 17.499, P = 0.001)\) (Fig. 5E). In both tissue and pial vessels, the average maximum dip for all five cats with low BP \((\Delta R/R: -0.32 \pm 0.12\% \text{ for tissue}, -0.37 \pm 0.12\% \text{ for vessels}; \text{MABP: } 48.1 \pm 3.3 \text{ mm Hg}; \Delta R/R, -0.13 \pm 0.09\% \text{ for tissue}; -0.16 \pm 0.10\% \text{ for vessels})\). The responses recovered when MABP returned to normal \((\text{MABP: } 84.0 \pm 2.0 \text{ mm Hg}; \Delta R/R, -0.13 \pm 0.03\% \text{ for tissue}; -0.16 \pm 0.04\% \text{ for vessels})\). Similar magnitudes of reflection changes in pial vessel and tissue ROIs suggest that increased dHb in tissue drains to the pial vessels.

Preservation of orientation selectivity of deoxyhemoglobin signals during low arterial blood pressure

Since neural spiking activity was preserved during the low BP condition (see Fig. 4), orientation selectivity of oxygen consumption in neurons is also expected to be the same as it is for normal BP. To test this prediction, we examined selectivity of the 620-nm OIS for normal and low BP because the 620-nm OIS originates mostly from dHb content changes in blood, which can be related to the oxygen consumption by neurons. For this purpose, "single-condition iso-orientation maps" (see OIS data analysis in Materials and methods) were calculated to obtain spatial patterns of the 620-nm OIS specific to a stimulus orientation (Grinvald et al., 1986; Shmuel and Grinvald, 1996); the orientation-non-specific signal is removed from this map. It should be noted that the non-specific signal is usually 5–10 times larger than the orientation-specific signal (e.g., the gray scale range of Figs. 5A and B was five times larger than that of Figs. 6A and B). In a representative study, the spatial pattern of iso-orientation domains (black patches marked with white crosses) with normal BP (Fig. 6A) appears essentially the same as that for low BP (Fig. 6B). The correlation coefficient between two single-condition maps for a corresponding 100 × 100-pixel \((2.75 \times 2.75 \text{ mm}^2)\) region (not including pial vessels, the cortical vasculature is shown in Fig. 6C) was significantly high \((R = 0.62, P < 0.01; \text{for } 5 \text{ cats})\). The location of iso-orientation domains was confirmed by a "differential iso-orientation map" at normal BP (see OIS data analysis in Materials and methods) shown in the Fig. 6D. Negative percentage values (i.e., black patches) in the differential iso-orientation map are referred to as "active domains" and remaining area as "inactive domains" (see also OIS data analysis in Materials and methods).

To determine whether orientation selectivity in 620-nm OIS is preserved at low BP, single-condition iso-orientation maps for one stimulus orientation at both low BP and at normal BP (as a control) obtained from the experiment of Single-orientation 570 and 620-nm OIS were compared with differential iso-orientation maps for four stimulus orientations obtained from the experiment of Four-orientation 620-nm (for each experiment, see Materials and methods and Table 1) (Fig. 6E). The correlation coefficient was calculated between the single-condition iso-orientation maps and the differential iso-orientation maps for corresponding 100 × 100-pixel regions. For the low BP single-condition iso-orientation data, the highest positive correlation was observed when the grating orientation was the same as the differential iso-orientation map (i.e., angular difference, 0°), while the highest negative correlation was detected when orientations were orthogonal (i.e., angular difference, 90°). The difference between normal vs. low BP was not statistically significant (two-way repeated measures ANOVA, \(F_{1,4} = 2.364, P = 0.199\), suggesting that dHb signals at both normal and low BP show similar orientation selectivity.

Furthermore, we calculated the magnitude difference of the OIS between active and inactive domains, which likely correlate with spike firing rates of neurons in the active domain (Shmuel and Grinvald, 1996). To calculate the magnitude difference in OIS, time courses of the 620-nm OIS in active and inactive domains were separately obtained. Then the signals during 10-s stimulation (from 0.5 to 10 s after the stimulus onset, 0 s was not included because the signal did not emerge clearly) were averaged. The mean magnitude difference between active and inactive domains for the 620 nm OIS \((n = 5 \text{ cats})\) at normal BP \((0.03 \pm 0.01\%\) was statistically not different \((P = 0.25)\) from that with low BP \((0.04 \pm 0.12\%)\).
0.01%) (Fig. 6F). This similarity of the mean magnitude difference for normal and low BP further demonstrates the preserved orientation selectivity at low BP. Taken together with the similarity of preferred orientation spiking activity for both BP conditions (Fig. 4C), these data suggest that the dHb change in blood measured by 620-nm OIS reflects increases of oxygen consumption in neurons. Thus, spatial specificity inherent in dHb signals can be examined during the low BP condition because only the CBF and CBV responses induced by neural activity are minimized.

Time-dependent spatial specificity of deoxyhemoglobin and CBV signals

To examine the spatial specificity of OIS, we separately calculated time courses of OIS within active and inactive domains from the single-condition raw activity maps (Figs. 7A and B). Whether the stimulus-induced reflection changes at 620 nm were positive or negative, similar magnitudes of reflection changes were observed at all time points in both the active and inactive domains at normal BP (Fig. 7A, red and blue lines in left panel). Interestingly, signal magnitudes of the two domains at 620 nm were similar even at the low BP conditions (Fig. 7A, right panel). Since stimulation-induced changes in blood velocity and volume were reduced significantly during the low BP conditions, the 620-nm OIS observed in both domains is not likely to be due to widespread dHb changes caused by CBF and CBV responses or light scattering (Ls) induced by velocity changes (Tomita et al., 1983), but rather caused by widespread dHb content changes per se. Similar magnitudes of reflection changes in active and inactive domains were also observed at 570 nm (Fig. 7B), where the signal source is CBV weighted. It should be noted that our selection of active and inactive column ROIs is based on conventional optical imaging approaches. If a higher threshold (such as a z score of 2) is used for the decision of ROIs, the signal difference between the active and inactive ROIs (green lines in Fig. 7) is larger; in present studies, the signal difference between active and in-active domains is the smallest. However, its time-dependent characteristics remain the same.

Before reporting quantitative results of the spatial specificity, the “sensitivity” and “specificity” of the OIS signal have to be defined (see also discussion in Duong et al., 2000a). Fig. 8A shows two hypothetical OIS profiles (S1 and S2, blue and red solid lines respectively) from single-condition raw activity maps, in which two neighboring iso-orientation domains (gray areas in A) are activated simultaneously. OIS activation area is much larger than column size determined by neural spike activity (black bars in A); OIS is induced even in orthogonal orientation columns (between two gray areas in A). Thus, OIS consists of orientation-non-specific and -specific signals. Typically, when two orthogonal stimuli are employed, orientation-non-specific signals have been determined by cocktail blank analysis. Analogous to this, the orientation-non-specific component is obtained from an average of signals between the iso-orientation and orthogonal domains (DC1 and DC2, blue and red dotted lines respectively). “Sensitivity” to detect a column is determined by the magnitude of the orientation-specific modulations (ΔS1 and ΔS2). To compare the sensitivity of S1 and S2, the orientation-non-specific modulations (DC1 and DC2) are subtracted from the raw OIS profiles (S1 and S2). As in Fig. 8B, the S1 sensitivity is larger than the S2 (ΔS1 > ΔS2). However, larger sensitivity does not necessary mean better spatial specificity; the non-specific modulation should also be considered. The “specificity” of the signal is related to the signal point spread, which is generally determined by the full-width at half-maximum (FWHM) of the signal. To compare the FWHM of the S1 and S2, each with different magnitude, the peak of S1 and S2 is normalized to 1.0. As in Fig. 8C, the profile of the S1 is broader than that of the S2. Thus, the FWHM of the S2 (a red horizontal bar) is smaller than that of the S1 (a blue horizontal bar); the specificity of the S2 is better than that of the S1. Instead of FWHM, the normalized sensitivity (ΔS1/DC and ΔS2/DC) can be used as an index of FWHM because it is correlated with FWHM (i.e., ΔS1/DC < ΔS2/DC; larger value, better specificity). However, normalization by the signal peak is not practical for the OIS raw activity maps because signal magnitudes are different among iso-orientation domains (e.g., see Fig. 8G). Thus, we used the orientation-non-specific signal for normalization instead (Fig. 8D); the orientation-specific modulation (Fig. 8B) is divided by the non-specific modulation (DC1 and DC2 in Fig. 8A). We will refer to this ratio (ΔS/DC) as spatial specificity index (larger ratio, better specificity). As consistent to the Fig. 8C (ΔS1/DC < ΔS2/DC), the spatial specificity index of the S2 is larger than that of the S1 (ΔS1/DC1 < ΔS2/DC2), suggesting better spatial specificity of the S2 compared to the S1 (Fig. 8D).

Actual OIS profiles (a 620-nm OIS with low BP) corresponding to Figs. 8A–D are shown in Figs. 8E–H. OIS profiles from single-condition raw activity maps at three different time periods (average for 1–2, 4–6, and 8–10 s) were plotted in Fig. 8E (thick solid lines, raw signals; thin solid lines, low-pass filtered (cutoff frequency, 1.5 Hz) signals). Dotted lines are the orientation-non-specific modulations, which were obtained from “single-condition raw activity maps” minus “single-condition iso-orientation maps”. The arrow indicates the location of a column (see Fig. 9A). Both orientation-
non-specific (dotted lines in Fig. 8E) and -specific (Fig. 8F) modulations developed with time. To compare FWHM of the raw OIS signals, the peak of all three profiles indicated by the arrow was normalized to 1.0 (Fig. 8G). In the normalized profiles, the spread of OIS became larger with time. In accordance with this, the spatial specificity index (\(S_{\text{DC}}\)) became smaller over time (Fig. 8H).

The maps corresponding to Figs. 8F (sensitivity) and H (spatial specificity index) are shown in upper and lower panels in Fig. 9A, respectively. The sensitivity map is equivalent to the single-condition iso-orientation map (i.e., the orientation-non-specific signal is removed). The specificity index map is obtained from dividing the sensitivity map by an orientation-non-specific map (i.e., the "single-condition raw activity map" minus the "single-condition iso-orientation map"). Higher contrasts of iso-orientation domains in sensitivity and specificity index maps indicate higher sensitivity and specificity, respectively. As in upper panels of Fig. 9A, the iso-orientation domains in the sensitivity maps were clearer in later time points, suggesting the sensitivity became larger with time. On the other hand, the iso-orientation domains in the spatial specificity index maps (Fig. 9A lower panels) were clearer at an early time point (1–2 s) compared to later time points (4–6 and 8–10 s), suggesting the spatial specificity became poor with time. Pial draining vessels’ responses were also apparent at later time points. For comparison, sensitivity and specificity index maps for a 570-nm OIS with low BP are shown in upper and lower panels of Fig. 9B. As similar to the 620-nm OIS with low BP, the signal sensitivity changed with time: it improved. In contrast, the spatial specificity index of the 570-nm OIS with low BP did not seem to change much over time. Pial draining vessels’ responses were also not apparent even at later time points.

We finally quantify the average spatial specificity index for 620-nm OIS (\(n = 5\) cats) and for 570-nm OIS (\(n = 4\) of 5 cats, one cat was excluded from the analysis because of low SNR) at each time point and plot them as a function of time from the stimulus onset (Fig. 10). Since multiple components probably contribute to the OIS at normal BP, each with a different sensitivity and specificity, we only quantified the sensitivity and specificity of OIS at low BP. To obtain the index, the difference in OIS magnitudes between the active and inactive domains (corresponding to the sensitivity (\(S_{\text{DC}}\); green lines in Figs. 7A and B) was divided by the average in OIS magnitude between the active and inactive domains (corresponding to the orientation-non-specific component (DC)). Thus, when the signal is only observed in the active domains, the index will be 2.0. On the other hand, when the magnitude of the signal in the active domains is the same as that in the inactive domains, the index will be 0. Results with one-way repeated measures ANOVA indicated a statistically significant difference among times during a 10-s visual stimulation (\(F_{18, 72} = 8.122, P = 3.73 \times 10^{-11}\)) for the 620-nm OIS. During the low BP condition, the average spatial specificity index of the 620-nm OIS for all five cats (red line in Fig. 10A) was initially as high as 0.86 ± 0.60 (at 1.0 s after the stimulus onset) and quickly declined with time (statistically significant differences between the indices at
two successive times were $P = 0.001 - 0.049$). This spatial specificity dependence on time cannot be explained by the scattering of light, which is inherent in optical measurement (Orbach and Cohen, 1983), because scattering of light originating from the active domains to inactive domains should be closely correlated, resulting in time-independent spatial specificity. By contrast, the index of the 570-nm OIS with low BP (blue line in Fig. 10A) did not show such a time variance during a 10-s visual stimulation (results with one-way repeated measures ANOVA indicated no statistically significant difference among times ($F_{1,72} = 0.482, P = 0.955$). On the other hand, the sensitivity of the 620-nm OIS during low BP (green line in Fig. 10B) became better at later time points, whereas the specificity was 0.06, 0.12, and 0.12% at progressive time points. Stimulus orientation used was 0°. Wavelength used was 570 nm except the differential map (620 nm). Other conventions are the same as panel A.

Discussion

We have demonstrated during low BP conditions (i) the stimulus-induced CBV response is reduced without changing neural activity, and (ii) time-dependent spatial specificity of dHb responses to active orientation-selective columns. During visual stimulation under sNP-induced low BP conditions with vessel dilation, the dHb content change (620-nm OIS) resulting from the increase in oxygen consumption can be separated from the effect of CBF and CBV changes (570-nm OIS). Consequently, a prolonged dip was observed in the 620-nm OIS during a 10-s stimulation period. A similar observation was found in fMRI studies in this laboratory (Nagaoka et al., 2002, in press), where positive BOLD signals during normal BP conditions changed into negative BOLD signals at low BP. Thus, current dHb-weighted 620-nm and CBV-weighted 570-nm OIS studies are directly applicable to the investigation of spatial specificity of fMRI at a columnar level.

Utilization of sNP-induced low blood pressure

The sNP is widely clinically used to reduce blood pressure. Even at less than 50 mm Hg MAP, the following physiological parameters were well maintained; cortical surface oxygen tension (Maekawa et al., 1979 (cat), CMRO2 (Mienenfelder and Milde, 1988 (dog); Pinaud et al., 1989 (human); Schumann-Bard et al., 2005; Schumann et al., 1998 (baboon)), pH and normal ionic concentration gradients across cell membranes (Morris et al., 1983 (cat), evoked field potential (Kottenberg-Assenmacher et al., 2003 (human)), and the power of EEG (Ishikawa and McDowall, 1980 (cat)). Here, we have also demonstrated good maintenance of orientation-specific spiking activity (see Fig. 4) and dHb signal (see Fig. 6) during sNP-induced low BP. The reduction of evoked-CBV (the present study) and CBF (Artru and Colley, 1984; Gregory et al., 1981) during sNP-induced low BP seems to be larger than those caused by nitric oxide synthetase (NOS) inhibitors (e.g., Offenhauser et al., 2005; for review, see Iadecola and Niwa, 2002). Thus, instead of use of NOS inhibitors, sNP-induced low BP can be used for a considerable reduction of evoked CBV and CBF responses without concomitant decrease of neural activity.

One concern for sNP administration is cyanide toxicity. However, McDowall et al. (1974) reported no toxicity (i.e., “the animals showing a normal response”) for baboon in the use of 1.25 mg/kg h−1 (Table 2 in McDowall et al., 1974). Similarly, cyanide toxicity does not seem to be represented in cat at <1 mg/kg sNP administration (Ishikawa and McDowall, 1980; Maekawa et al., 1979; Morris et al., 1983). Because our total dosage of sNP was...
less than 1 mg/kg, cyanide toxicity in our preparation may not be significant. Another concern is that nitric oxide (NO) is generated from sNP administration. Because in addition to its vasodilatation effect, NO also inhibits cytochrome oxidase (Brown and Cooper, 1994) and thus during sNP administration CMRO₂ is possibly reduced despite unchanged spiking activity. Maekawa et al. (1979) reported a modest decrease of CMRO₂ even in an adequate oxygen supply during sNP-induced low BP. However, even if CMRO₂ decreases during sNP administration, as long as dHB is produced by oxygen consumption, time-dependent spatial specificity of dHB signal should be preserved.

What makes spatial specificity of deoxyhemoglobin signals poor?

The aim of this study was to determine spatial specificity of the dHB signal inherently induced by oxygen consumption. Even though the effect of CBF and CBV changes on the dHB signal was considerably reduced, the spatial specificity of 620-nm OIS to the iso-orientation domains was good only during the initial few seconds (see Figs. 9 and 10). This finding suggests that the poor spatial specificity of the dHB signal at later time points during the low BP condition is not due to widespread dHB changes caused by CBF or CBV modulations but is rather caused directly by widespread changes in the dHB signal itself. Two possible explanations could account for the time-dependent decrease in spatial specificity of the dHB signal at low BP.

First, if the wide extent of the OIS is tied to the wide distribution of sub-threshold synaptic activity (Grinvald et al., 1994; Sharon and Grinvald, 2002) or lateral spread of spiking activity along dendrites and axonal processes, the spatial specificity of the dHB signal will be poor. Since OIS signals are elicited by changes in spiking activity or synaptic potentials of neurons (Das and Gilbert, 1995; Gurden et al., 2003; Kinoshita et al., 2003; Toth et al., 1996) or both, it is plausible that the spread of neural activity over time could cause a time-dependent spread of intrinsic signals (for example, see Liu et al., 2003). Further studies are necessary to determine the neural origin of OIS.

Second, we propose that draining of dHB from active sites can easily explain the time-dependent spread of the 620-nm OIS at low BP. Even though neural origin of the OIS remains controversial, changes in oxygen consumption and glucose metabolism seem to occur within the active iso-orientation domain and not the inactive domain (Lowel et al., 1987; Thompson et al., 2003). Then dHB produced by oxygen consumption increases within active domains should drain into downstream vessels, including intracortical and pial veins, due to the existence of blood flow even though a stimulation-evoked CBF change is not induced (referred to draining effect).

For image detection of the draining effect, the distance between intracortical veins must be less than the size of the functional column. Density of emerging veins (~2.5/mm²; inter-vein distance ~0.6 mm, estimated by Fig. 63 in Duvernay et al. (1981) and Park et al., 2005) is approximately two times higher than that of iso-orientation domains (~1.2/mm², inter-columnar distance: ~1.0 mm) for a single orientation (Bonhoeffer and Grinvald, 1993; Rao et al., 1997). If dHB induced by neural activity initially increases within active iso-orientation domains and then drains into the intracortical emerging veins, dHB-based signals may not originate from the ‘true’ active domains. Furthermore, pial venous networks are highly dense, suggesting that dHB changes will eventually spread over the cortical surface, and reducing the signal specificity further. Consequently, the 620-nm OIS at low BP would lose its specificity with time.

Dynamic 620-nm OIS changes in tissue and in pial vessels were almost identical (see Fig. 5D). This suggests that the draining of dHB from active domains into the pial vessels is faster than our sampling rate (0.5 s). Taking into account that the arteriovenous transit time of red blood cells is 0.1–0.35 s (Hudetz, 1997; Rovainen et al., 1993 in rodents), dHB changes in tissue regions will be quickly integrated into an emerging vein and spread into pial veins within 1 s (see also Narayan et al., 1994; Takashima et al., 2001). Thus, only the early time point (up to ~2 s) of the 620-nm OIS dip is specific to active regions.

Spatial specificity of CBV-weighted signals

At normal BP conditions, local CBV changes elicited by neural activity have to occur in concert with dilation in upstream parent arteries (Erinjeri and Woolsey, 2002; Iadecola et al., 1997). To reduce the less-specific vascular contributions from upstream arteries, post-processing analyses were applied to CBV-weighted OIS studies of rodent barrel cortex (Hess et al., 2000; Sheth et al., 2004), and cat and primate visual cortex (Vanzetta et al., 2004). Then CBV changes in parenchymal microvessels (diameter <~10 μm) were found to be specific to sub-millimeter functional domains (Frostig et al., 1990; Fukuda et al., 2005; Hess et al., 2000; Narayan et al., 1995; Sheth et al., 2004; Vanzetta et al., 2004). After this removal of signal contribution from pial arteries, CBV-weighted signals originate from penetrating arterioles, branching small arterioles and possibly capillaries. If penetrating arterioles are individually controlled, their density defines the limit for CBV-weighted spatial resolution. The density of penetrating arterioles (15.8/mm², inter-arteriole distance: ~0.25 mm) in the cat cerebral cortex (McHedlishvili and Kuridze, 1984) is much higher than that of iso-orientation domains (1.2/mm², inter-domain distance: ~1.0 mm). Thus, detection of penetrating arterioles would provide sufficient resolution for mapping iso-orientation domains in cats. If CBV regulation occurs within smaller-size vessels including capillaries, then an even higher spatial resolution can be achieved.

Reducing arterial BP decreased the less-specific vascular contributions from upstream arteries. The 570-nm OIS almost disappeared at low BP except for a component highly localized to iso-orientation domains (see Fig. 9B). We suggest that this remaining component is also due to CBV changes in parenchymal microvessels rather than changes in Ls due to cellular swelling (Holthoff and Witte, 1996; MacVicar and Hochman, 1991) because the activity-dependent Ls component is unlikely to significantly contribute to the OIS in vivo (Nomura et al., 2000). Since, unlike pial vessels, parenchymal vessels may not be fully dilated at low BP, they can still respond to stimulus (for CO₂ stimulation, see Gregory et al., 1981), suggesting CBV regulation within parenchymal microvessels independently of parent artery.

Implication for columnar resolution functional MRI

Our results suggest that the draining effect of pial and intracortical veins in dHB-based imaging techniques is intrinsically unavoidable (Figs. 5 and 7; see also Hayashi et al., 2005) and reduces its spatial specificity of dHB signal (Figs. 9 and 10); it appears immediately after the stimulus onset (~2 s) and becomes dominant with time. Similarly, Duong et al. (2000a) reported that
only the first ~2 s of the entire early negative BOLD response at normal BP showed high spatial specificity to cats’ iso-orientation columns; Kim et al. (2000a) used the first 2-s BOLD dip for mapping iso-orientation domains in cats. Positive BOLD data acquired before the draining effect become significant (e.g., less than 2–4 s from stimulus onset) was shown to improve spatial specificity (Goodyear and Menon, 2001; Menon and Goodyear, 1999). Thus, regardless of the BOLD signal polarity (negative or positive), only data obtained within a few seconds after the onset of stimulation (i.e., before the draining effect dominates) can be used for high-resolution studies if the non-specific signal from pial and intra-cortical draining vessels is not removed. Once the non-specific signal is removed, a longer stimulation duration can be applied to increase the sensitivity of signals (i.e., difference between active and inactive domains) (Fig. 8D, see also Cheng et al., 2001).

To reduce the non-specific signals and consequently improve the spatial specificity in primary visual cortex where the cortical modules from orthogonal stimuli have a complementary pattern (e.g., ocular dominance and iso-orientation domains), the non-specific components in optical imaging studies have been removed by (i) the subtraction of imaging signals in response to orthogonal stimuli (Blasdel, 1992; Blasdel and Salama, 1986; Grinvald et al., 1986; for review, see Bonhoeffer and Grinvald, 1996), and (ii) Fourier analysis of data acquired during repeated orthogonal stimuli (Kalatsky and Stryker, 2003). Similar approaches were used to map human ocular dominance columns with positive BOLD (Cheng et al., 2001; Menon et al., 1997). However, the differential methods cannot be applied to most brain areas because orthogonal stimulation condition is unknown. Thus, the single-condition map has to be used.

Positive BOLD signal at normal BP is derived from a mismatch between CMRO₂ and CBF changes. Thus, besides the draining effect, the specificity and sensitivity of BOLD signal are determined by a combination of CMRO₂ and CBF responses. Since an increase in CMRO₂ causes a decrease in BOLD signal, while an increase in CBF causes an increase in BOLD signal, the specificity and sensitivity of BOLD signal are possibly poorer than that of either CMRO₂ or CBF signals (see also Duong et al., 2000a). Thus, alternative non-BOLD fMRI methods, which have high sensitivity and are free from complication by the draining effect, should be considered for single-condition stimulation. Based on our 570-nm OIS results, we suggest that CBV-weighted fMRI (Belliveau et al., 1991; Kennan et al., 1998; Mandeville et al., 1998; van Bruggen et al., 1998) and possibly CBF-weighted fMRI (Edelman et al., 1994; Kim, 1995; Kwong et al., 1992) will have an improved spatial specificity of hemodynamic signals. Unlike the 570-nm OIS, both CBV- and CBF-weighted fMRI can minimize the contribution of large pial vessels even at normal BP (Duong et al., 2000b; Mandeville and Marota, 1999; Silva et al., 2000) and have been successfully applied to laminar (Harel et al., 2002b; Duong et al., 2000b; Lu et al., 2004; Zhao et al., 2004b) and columnar resolution fMRI studies (Duong et al., 2001; Zhao et al., 2005) in the cat visual cortex.

Acknowledgments

We thank Kristy Hendrich, Michelle Tasker, and Toshihiro Hayashi for their helpful comments on the manuscript. This study was supported by NIH EB003324, EB003375, EB002013, NS44589 and McKnight Foundation.

References

