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Long-range order, especially chiral order, in the two-dimensional spin + XXZ an-
tiferromagnet H=J % (S7S7+S7S]+4S}5}) on a triangular lattice is studied, par-
tially by showing exact ground states and partially using the spin-wave theory. Exact
ground states in the region 4 < —0.5 are found. These states are not disordered by
quantum fluctuation. Most of the ground states at A= —0.5 have a so-called 120°
structure. Ground-state properties in the region —0.5=4 <1 are studied using the
spin-wave theory. It is shown that quantum fluctuations are enhanced in the ground
states as 4 is increased. The phase diagram of the relevant system at low temperatures
is also discussed using the spin-wave theory.

§1. Introduction

As Villain” pointed out, the ground-state
degeneracy of chirality in the frustrated
classical XY model on two-dimensional lat-
tices causes an Ising-type phase transition at
finite temperatures.>® The classical antifer-
romagnetic XX Z model on a triangular lattice
(the classical AFT XXZ model) described
by the Hamiltonian H=J X (S7S;+S7S’
+4S8iS¥) with —0.5<A<1 has the same
properties in the low-temperature phase as
those of the X' Y model, since the ground states
have a so-called 120° structure and are discrete-
ly degenerate with chirality. Miyashita”
studied this system using Monte Carlo simula-
tion and showed that a chiral-order phase-tran-
sition appears at finite temperatures. He
found that a reentrant phase transition occurs
for the model 4> —0.5, which is caused by
the non-trivial degeneracy of the ground states
at A=-—0.5.

In the quantum case, systems are fluctuating
with frustration and quantum effects.*” Ex-
istence of chiral order has been studied by
many authors in the two-dimensional S=+
AFT XY model. Results of studies using the
exact diagonalization® in finite clusters with
different size are not consistent with each
other.>” Thus the size of calculated clusters is

not enough large to predict properties of in-
finite systems. A critical point appeared in a
study using the Monte Carlo method.!” In a
study using high-temperature series-expan-
sions, no critical point was found.'? In the
previous paper,'¥ we studied this S=+ AFT
XXZ model using the super-effective-field
theory'® and we concluded, from the size-
dependence of critical temperatures, that a
chiral order exists at finite temperatures at
least in the region —0.5<4=<0.5. For the case
near the symmetry of the Heisenberg model,
say 4>0.5, the size of the clusters is not large
enough to conclude the existence of the chiral
order.

In the present paper we show exact ground
states of a special model, which is the two-
dimensional AFT XXZ model with 4= —0.5.
These ground states have the degeneracy of
chirality and the sublattice magnetization is
fully ordered in these states. We study the
properties of ground states in the model with
A larger than —0.5 using the spin-wave theory
and we show how the quantum effects change
the sublattice magnetization and chirality as A
is increased. Our approach to the study of
frustrated quantum spin systems is contrary to
that by Fazekas and Anderson.® They con-
tinued the disordered ground states changing
A from infinity to 1. We study the ground
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states by changing A from an ordered region,
say —0.5, to 1. At the end of the present
paper, we study thermal properties in this
model using the spin-wave theory'™'® and
discuss a phase diagram on chiral order con-
sidering all the above results together with our
previous ones.'?

In the next section we show exact ground
states of the quantum XXZ model with
A=-—0.5 and 4< —0.5. In §3 we study the
properties of ground states in the quantum
XXZ model with various values of 4 using the
spin-wave theory. In §4 thermal properties of
the model A4 ~ —0.5 are studied and the phase
diagram of chiral order is discussed. Section 5
contains summary and discussion.

§2. Exact Ground States of the Quantum
AFT XXZ Model with 4< —0.5

The ground states of the S=+ XX Z antifer-
romagnet on the triangular lattice are exactly
found here in the region with A< —0.5. We
briefly derive them and discuss the properties
of them.

2.1 Caseof A=-0.5

First we consider the ground states in the
S=1/2 AFT XXZ model with A= —0.5. It is
convenient to change the spin-space and define
the Hamiltonian as

H=J<Z> (afaf+ai~‘a}‘——;— a{a,y-), 2.1
1,J

J

f — J T X X oy .y
UHU—_?Z(O','JJ""O';U""G[UJ')‘F

$ij>
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where the summation is taken over all nearest-
neighbour pairs of sites and ¢ (e=x, y, z) are
the Pauli matrices. In this way we choose the
quantized axis on the plane to which all the
spin-vectors belong in the ground states of the
classical model. Here we consider the follow-
ing two states,

|GS.1)>=U |all spins 1),
1GS.2>=U"lall spins 1), (2.2)

where 6?|1)=1[1) and ¢*|1)=—[!) and U is
a rotation operator defined by

> a{—i% D a?). @.3)

(3
U=exp |i—
3 ie B sub ie Csub

This operator rotates all the spins on the
sublattice B through the angle 2n/3 and on
the sublattice C through the angle —2n/3
about the y axis. With this operator, quantum
spins have the 120° structure. These states
have a form similar to the trial wavefunction
which was proposed by Miyashita'” and by
Betts and Miyashita'® as the ground state of
the s=% AFT XY model.

From now we show that the states |GS.1>
and |GS.2) belong to the ground states. First
we indicate that the state |all spins 1) is one of
the ground states of the transformed Hamilto-
nian, UTHU, which is given by

V3 J
— >, (6iof—aiod).

2.4)
2 @&

This Hamiltonian (2.4) is divided into cell-Hamiltonians which are defined on each triangular cell

as shown in Fig. 1, namely

U'HU= Y U'HpuinU,

A, k)

@2.5)

where A(i, j, k) indicates the upward triangular cell labeled with the sites i, j and k. The cell-

Hamiltonian is given by

J
7

R
U Hpg,o,yU=—

Z 2 X X Y )
(O';O'j+0',~0'j+0'i0'j)

{i,j>=
<1,25,42,35,<3,1>

V3 J
+__.__

(cioi—aiod). (2.6)

(1-2),(2-3),6~D)



J. Phys. Soc. Jpn. Downloaded from journals.jps.jp by on 03/20/17

3734 Tsutomu Momo1 and Masuo SUZUKI
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Fig. 1. A triangular lattice is divided into shaded
triangular cells. The cell-Hamiltonians are defined on
each shaded cell.

The state |all spins 1) is one of the eigenstates
of this cell-Hamiltonian and the eigenvalue of
this state is —1.5J. Then we show that the
state |all spins 1) has a minimum energy. The
cell-Hamiltonian (2.6) can be easily diagonal-
ized in a triangular cell and all the eigenstates
and all the eigenvalues can be evaluated. From
a straightforward calculation, we have found
that the state | 711 is one of the ground states
of the transformed cell-Hamiltonian (2.6) and
that the ground-state energy is —1.5J. We
show that the operator Hagpsz+1.5J is
positive semidefinite in the space of spin states
on the total space. We construct orthonormal
bases of spin states on the total lattice with the
spin-configurations [1) or |1)> on each site.
For example, one of the bases is |wn)

CPIHA+1S5TIP>=3 > alfan

] n
8

n=1

=3 (Zl] @ (D) y)") (S tm@n (M) | ' Yen+1.5T).

As mentioned above, the minimum value of ¢,
is —1.5 J. Then we summarize the above
discussions as follows. For any state | %) on
the total lattice, the expectation value of the
operator UTHq 35U+ 1.5 J is always positive
or zero as

CPV\U Hrgany U+1.5T 19520, (2.13)

Thus the operator UTHaq,3U+1.5J is

(Vol. 61,

=|1it11---). This state is the product of a
three-spin state on the sites 1, 2 and 3 and a
spin-state on other sites as

lymp =111 111 ),

where [11---)" denotes a state |y, except
the three sites 1, 2 and 3. Each three-spin state
on the sites 1, 2 and 3 in these bases can be
represented with the eigenstates of the cell-
Hamiltonian UTHaq 23U as

2.7)

8
| TLT>A= Z Am (n) |¢n>A’ (28)

where |¢,>n (n=1,---,8) denote the
eigenstates of the cell-Hamiltonian
U'Hpq,,3U in the triangular cell A(1,2,3) as

U'HaaonUldda=¢nléuda.  (2.9)

Thus any spin-configuration | y,,) can be writ-
ten as

8
I l//m>= Z:l am(n) |¢n>A® I ‘//m>,’ (2.10)

where |y,,»’ denotes a state |y, except the
three sites 1, 2 and 3. Using this representa-
tion, any state | ¥) which is constructed with
a linear combination of |y,> can be
represented as

1P>=> am Wy
8
=2 an g)l a4 (M) | o> a® lymd’.  (2.11)

The expectation value of the operator Haq 23
+1.5J with respect to this state is

8
> ax(a,(m) <wilym' (€. +1.5T)

2.12)

positive semidefinite. Then the total operator
UTHU+1.5NJ, which is given by the summa-
tion of the cell-operator UTH,U+1.57, is
also positive semidefinite. From the results
that the state [1GS.1)> belongs to the
eigenstates, that the eigenvalues of these states
are all equal to —1.5JN and that the
minimum energy of the operator UTHU is
—1.5NJ, we conclude that the state |GS.1>
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belongs to the ground states of the total
Hamiltonian (2.1).

In the same way, the state |spin all 1) is also
shown to be one of the eigenstates of the
transformed Hamiltonian UHU " and it takes
a minimum energy. Then the state |GS.2) is
also shown to be one of the ground states of
the Hamiltonian (2.1).

These ground states are not fluctuating with
quantum effect and have fully-ordered sublat-
tice-magnetization and chirality. The signs of
the chirality are opposite to each other as
follows:

(GS.IIQIGS.1>=—%

3
{GS.21Q IGS.2>=Z , 2.19)
where Q is the order parameter of the chiral
order defined by

1 1

—_— E S
Q 3Nzﬁ<;j>(axaj 0':0'1),

(2.15)

Ri=URU"
(’0 >
=exp | i< >, 07
2 5
P v 1,
xexp {i— | > 0f+ > | =~ oi+
2 A B 2

2 o)t}
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where N is the number of sites. Here we briefly
discuss some interesting properties of these
ground-states. The ground states are
degenerate with rotated states, namely with
RIGS.1) and RIGS.2), where

0
R=exp (17 > a?),

since the Hamiltonian (2.1) has the O(2) sym-
metry. However, there is another type of
degeneracy. The rotated states

|GS.1">=UR; |all spins 1>=Rj1GS.1),
2.17)

(2.16)

also belong to the ground states, where

0
R;=exp (17 2 a{) exp (1—?— 2 ai‘),
(2.18)

and

(2.19)

Because the state |111) is also one of the ground states of the transformed Hamiltonian R; u'

HxUR; which is given by

J
R;r UTHA(1,2,3) UR3=—— Z

2 (ofgjtoiojtoio}
=
<1,2>,<zj,3>,<3,1>
J3J e L
+ 2 2)] {cos p(aia}—0ia)—sin¢(aia)—alaj)}. (2.20)
5=

(1-2),(2-3),3—1)

Similarly the states 1GS.2’)> =U'R;|all spins
1> belong to the ground states.

The Hamiltonian (2.1) is not invariant with
respect to Rg, namely

R{'HR{#H. (2.21)

Only the ground-state energy is invariant
under the irregular O(3) transformation, Rj.
This degeneracy of the ground states is the

same as that of the corresponding classical
model.” The states |GS.1’)> have negative
values of the chirality as
3
{(GS.1"|QIGS.1">= 7 cos’¢, (2.22)
and |GS.2’) have positive one. The transfor-

mation R} corresponds to closing the umbrella
of spins which has the 120° structure and
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changes the absoluté value of the chirality be-

tween 3/4 and 0, but never changes the sign.

Thus the ground states have degeneracy of the

chirality and the irregular O(3) symmetry.

Most of the ground states, |GS.1’) (and

(Vol. 61,

|GS.2")), have a scalar chiral order' defined
by the operator

E=F;»=25:-(5:%83),

because we have

(2.23)

{GS.1'| E1GS.1">=<all spins 1 | R1 U'EUR;| all spins 1)

343

i— sin ¢ cos® ¢ #0.

2.2 Ferromagnetic Ising-like model (A< —0.5)

(2.24)

Next we consider the region 4 < —0.5 in which the interactions of spin-z-components namely
ferromagnetic Ising interactions are dominant. Here we use the following Hamiltonian

H=J >, (6icj+ala)+Ac}a?).

<i,4>

The ground-states are given by

(2.25)

|GS.3)>=|all spins 1,

| GS.4>=|all spins {),

(2.26)

where the states | 1) and |{) are the eigenstates of the Pauli operator . These states have a fer-

romagnetic order and no chiral order.

We show the proof that these two states belong to the ground states. Clearly these states,
|GS.3) and |GS.4) are the eigenstates of the Hamiltonian (2.25) and the eigenvalues of both
states are 34 NJ. Then we indicate here that the states (2.26) have a minimum energy. We again
divide the Hamiltonian (2.25) into the cell-Hamiltonians which are given by

H, A1,2,3)— J Z
i, jy=
{1,25,42,3>,43,1>

Clearly the states (2.26) are also the eigenstates
of this cell-Hamiltonian. From direct
diagonalization of the cell-Hamiltonian, we
have found that states |711) and |{ll) are the
ground states of the cell-Hamiltonian (2.27) in
A=< —0.5 and the eigenvalue is 34J. From
this result we conclude, in the same way as
shown in the previous subsection, that the
operator Haq 3 — 3A4J is positive semidefinite
in the spin-space on the total lattice. In this
way it has been proved that all the eigenvalues
of the Hamiltonian A are larger than 34 JN or
just equal to it.

Thus |GS.3> and |GS.4) belong to the
eigenstates and the eigenvalue of these states,
34 JN, is the minimum energy of the operator
H. Consequently we conclude that the states
|GS.3) and 1GS.4) belong to the ground
states of the total Hamiltonian (2.25). As

(c70itaiagl+A4oia?).

2.27)

shown in the above proof, the states (2.26)
belong also to the ground states of the XXZ
model with 4=—0.5.

§3. Spin-Wave Expansion

Here we estimate values of the sublattice-
magnetization and the chirality in ground
states of the quantum spin S AFT XX Z model
with A4=-—0.5 using the spin-wave
theory'>1%® and we discuss how the ground
states change from those for the model with
A=—0.5 as 4 is increased. As shown in the
previous section, the ground states of the quan-
tum AFT XXZ model with 4= —0.5 are the
same as those of the classical model. By in-
creasing A from —0.5, quantum effects are in-
troduced into the ground states and their
physical values differ from those of the corre-
sponding classical model. We have used the
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Holstein-Primakoff transformation to expand
the spin operator and have calculated some
physical values up to the first order of 1/S.

At zero temperature, spins have the 120°
structure in the plane in the classical AFT
XXZ model with —0.5<4<1. We expand
the quantum Hamiltonian from this classical
ground state. The quantized axis on each site
is defined, so that the axes have the 120° struc-
ture. Oguchi?? first applied this method to the
Heisenberg model on the triangular lattice.

We choose the quantized axes in the XY
plane as in §2.1. Namely we use the Hamilto-
nian

H=J%(8iS;+878;+48787), (.1

where S (e=x, y, 7) denote spin operators.
With the operator

2 2n

U=exp (lT > 81—i— 2, S,Y), 3.2)

ieB 3 ieC

1
1 Q3 X QX
U QU=4 > (SiSi+STSH—

$i,j>

m(g})(siSj_SiSj).
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the Hamiltonian (3.1) is transformed as

T _ J zZ2Qz X Qx yQJy

U HU_—7<Z;>(S,.S,+s,-sj—2AS,-Sj)
L]

V3 J rex  x oz

+——"‘"‘Z (S,SJ_S,SJ)'

(3.3)
2 @&

Spin operators are expanded using the Hols-
tein-Primakoff transformation

SH=4+28—alaa;
ST=alvV28—ala
Si=S—ala, (3.4

where {a;} denote boson operators. This
transformation corresponds to an expansion
from the ground state |GS.1) for 4=-0.5.
The sublattice-magnetization is given by

U'MU= > 85, 3.5)

and the chiral order parameter is transformed
as

1
(3.6)

Using the boson operators {a}, a;} and by expanding them with respect to 1/S up to the first

order, the Hamiltonian (3.3) is transformed as

3NJS(S+1) 3JS

U'HU= ——— X 2-a —24) e M@k ac+acay)
k
3J(1+424)8
- R > ye(a-ra+aialy), 3.7
k
where {k} denote wave vectors in the first Brillouin zone of the triangular lattice and
yk=% {cos e;-k+cos e,-k+cos (e;—ey) k}, (3.8)
where e; (i=1, 2) denote unit vectors of the lattice. Using the transformation
a,=by; cosh G_k—btk sinh 6,
ay=—b_;sinh 6.+ b} cosh 6_,, (3.9)
we diagonalize the Hamiltonian (3.7) as
i 3INJS(S+1)
UHU=———"7"—
2
3JS N :
+T Si{(+24y,) exp (20:)+(1—px) exp (—26k)} (Dbt biby), (3.10)
k
where
1—y,
exp (260) i 3.11)
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In the ground state, the expectation values of the number of bosons with nonvanishing momenta
{k} are zero, namely <b} b, >,=0 in the region —0.5<4 <1, since the spectrum of a boson, &, is

always positive. The ground-state energy is given by

U'THU Y= — >

3INJS(S+1) 3JS
#JFT > A=y +24),
k

(3.12)

in the region —0.5<4 =<1 and it is shown in Fig. 2(a) (and Tables I and II ). The sublattice

magnetization (3.5) is transformed as

1

U'MU=N (S+—> 2 33 cosh 20 (b1 b+ byl +5 3 sinh 200 (bkbLitboib),  (3.13)
k k

2

and the expectation value of it in the ground state is given by

+ _ 1 __!_
U MU>g—N(S+E) 2 Zk]

{\/ 1= +f+2AYk}
1424y Vi—yp |-

(3.14)

The calculated values in the region —0.5=<4<1 are shown in Fig. 2(b). The chiral-order

parameter (3.6) is written by
3NS(S+1) 38

T —_— ——
voU=—y 8

3S
+=5 35 {2sinh 20+ pcexp (=200} bLibi+bib_y).
k

37 {2 cosh 26, — yx exp (—26,)} (by b+ biby)
k

(3.15)

The expectation values of the chiral-order parameter in the ground state are given by

KU'QUY, 7

and are shown in Fig. 2(c).

At A4=-0.5, the calculated ground-state
energy and the calculated values of chirality
and sublattice magnetization in the ground
states are exactly equal to those of the exact
ground states (2.2), though we have expanded
them only up to the first order of 1/S. Namely
the remaining higher order terms in 1/S do
not contribute to these physical quantities at
A=-—0.5.

As A is increased, the values of the ground-
state energy become lower and lower and the
deviation of the sublattice-magnetization
becomes larger and larger compared with the
classical values. Thus the quantum effects ap-
pear and become stronger as the antifer-
romagnetic Ising interactions are introduced
into the Hamiltonian. In comparison with the
above two results, the values of the chirality
change in a little different way. For the case
A= —0.5 the estimated value is equal to the
exact one. As A4 is increased, the calculated
values of the chirality become a little larger

_3NS(S+1) 3§

(A+4yd) 1=y

~ = = 3.16
= 1+24p (3.16)

than the classical one. In the S=+ XY model
(4=0), the value of it is given by <QD,/
S2N=0.798, where the corresponding
classical value is given by <Q).,/N=0.75. In
the quantum model, the eigenvalues of the
chiral order parameter on a triangle-cell are 1,
0 and —1. Then it is possible that the value of
chirality is enhanced in the quantum case. As
the system approaches the Heisenberg model,
the value of chirality decreases quickly in the
same way as the sublattice-magnetization
does.

The values of the ground-state energy are
shown in Tables I and II together with the
results of other papers. In spite of our simple
estimate to expand only up to the first order of
1/8S, our results agree well with other results.
In the S=+ AFT XY model the values of the
sublattice magnetization is given by {M>
/SN=0.8973 and the chirality is given by <Q)
/S2N=0.7982. In the Heisenberg model, we
have <{M)»/SN=0.4780 and <Q)/S*N
=0.4050. The value of the chirality estimated
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Table I. Ground-state energy per bonds, E,/3NJ, of
the quantum AFT XY model.

Method Ground-state energy
Classical limit —-0.5
Variational method'” —0.5233
Finite-lattice method®'? —0.5456
Spin-wave theory O(1/8%)%% —0.5172~ —0.5392
—0.532

Spin-wave theory O(1/S)

Table II.  Ground-state energy per bonds, E,/3NJ, of
the quantum AFT Heisenberg model.

Method Ground-state energy
Classical limit —-0.5
Variational method (RVB)? —0.613
Variational method

(120° structure)® 0.7156
Finite-lattice method?*!® —0.729
Spin-wave theory O(1/8%)*%  —0.728 ~ —0.7488
Spin-wave theory O(1/S)* —0.718

by the exact diagonalization method under the
assumption that a long-range order exists in
the infinite systems is given by limy-» <Q*Q*>
/S*N?=0.556' (or 0.526”) in the AFT XY
model. Our corresponding value is given by
{0>?/S*N*=0.637. In the Heisenberg model,
the Hamiltonian has the O(3) symmetry. Then
the chiral long-range order is isotropic as
follows:

] ]
fim (070 fim <0707
1 1 z z
=lim —=-<Q*Q0%. (.17

The result by exact diagonalization is given
by limy-o <Q*Q*>/S*N?=0.08.2 Then the
chirality of the system'in which the O(3) sym-
metry of the chirality is spontaneously broken
is given by <Q>*/S*N*~limy-«» 3<Q*Q%*)
/S*N?*=0.24. Our corresponding result is
given by <0>*/S*N?=0.164. In the spin-wave
theory, we have estimated the value of it under
the assumption that the symmetry has been
spontaneously broken by an infinitesimal effec-
tive field.

§4. Phase Diagram at Low Temperatures

In this section we discuss a phase diagram at
finite temperatures in the quantum AFT XXZ

Ground-State Properties of the Quantum AFT XXZ Model
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Fig. 2. Evaluated values of (a) energy E,/3NJS?, (b)
sublattice magnetization M/SN, and (c) chirality
Q/S*N in the ground states of the s=1/2 AFT XXZ
model using the spin-wave expansion up to 1/S
order. The parameter 4 means the anisotropy of the
z-component interactions. The symbols # denote the
exact results of the states |GS.1)> and dashed lines
denote values in the classical limit (S— 0).
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model. We consider especially the chiral phase
and ferromagnetic one. In the case of the cor-
responding classical model, the chirality is or-
dered in the region —0.5 <4 <1 at low temper-
atures and a ferromagnetic order exists in the
region 4<—0.5.Y At 4=-—0.5, the ground
states are non-trivially degenerate. Miyashita®
showed that ferromagnetically ordered states
are favorite at finite temperatures in the
classical model with 4= —0.5 by calculating
the free energy in the harmonic approximation
and he showed using Monte Carlo simulation
that a reentrant phase transition appears for
the model 4 > —0.5. In the AFT plane rotator
model, the appearance of the KT transition is
also observed near the critical point of the
chiral order.? There remains a possibility that
the KT transition appears also in the quantum
case accompanied with or independent of the
chiral order phase transition. In this paper we
only discuss the order which can be defined as
the existence of nonvanishing values of order
parameters, namely the chiral order and fer-
romagnetic order.

In the previous paper'® we studied the vec-
tor chiral order in the S=% AFT XXZ model

38 (1+Ayk)v1—yk

(Vol. 61,

using the super-effective-field theory'® (SEFT).
In the SEFT, all the states of spins in finite
clusters are treated exactly and the effect for
the relevant system to be infinite is introduced
as effective-fields. In this way, the chiral order
is studied in a mean-field theoretical approach
and physical properties of the infinite system
are predicted from the size-dependence of
critical temperatures by analyzing with the
finite-size scaling. We applied this method to
the S=+ AFT X XZ model and concluded that
there exists a chiral long-range order at low
temperatures in the region —0.5=<4<0.5.
Here we discuss the phase diagram of the
quantum AFT XXZ model using the spin-
wave theory. In §3 we have expanded the
Hamiltonian in the region —0.5<4<1 as

U HU=CU 'HU Y+ exbibi,  (4.1)
k

where {<UTHU ), denotes the ground-state
energy defined in eq. (3.12) and

e=3JS V(1 +24y)(1 —yx).

4.2)

The expectation value of the chirality at finite
temperatures is given by

t T T
Uutouy=<U S et £ B
U QU>=U QU>, 2 2 T2y, {bibi>
3S 1+4 V11— 1
—(U' Uy~ 3 U AT LT : “.3)
2 % V1+2A4y,  exp (Ber)—1
where the bracket {---)> denotes thermal _~3NS2 38 3 1
average and <U'QU ), denotes the expecta- (@r= 4 4 ; 2= exp (Ber)—1"

tion value of the chirality at ground states,
which was given in eq. (3.16). In the region
—0.5<A4 <1, a dispersion relation behaves as
&~ k| for small k. Then the second term in
eq. (4.3), namely deviation of the chirality
from ground-state values is finite and small at
low temperatures. Then the chirality remains
nonvanishing even at finite temperatures. The
numerator of the integrand of eq. (4.3) has a
zero-point at k=0. The existence of this zero-
point corresponds to the stableness of the
chirality against (long-range) spin-wave excita-
tions.
At A= —0.5, we obtain

(4.4)

The dispersion relation is & ~ k* for small k.
Then the second term becomes divergent as

38
A0 R T S e

~p1 Z——ly—mo. 4.5)
T k

This divergence means that the chirality is

unstable at 4= —0.5 against spin-wave excita-

tions. This result suggests that the phase

boundary of the chiral order comes to an end

at A= —0.5 and that the chirality is destroyed
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at A= —0.5 at finite temperatures as shown in
Fig. 4.

At A=1 energy spectra have other zero-
points at the corners of the Brillouin zone. For
these modes, the deviation of the chirality 4AQ
becomes divergent as

’ 1
-1

A0~F NG @49
where k’ denotes a momentum at one of the
corner points of the Brillouin zone, say
(47/3, 0). This result is consistent with the ex-
act proof that there exists no vector chiral
order at finite temperatures.?®

Next we discuss the phase diagram of the fer-
romagnetic phase. As shown in §2.2, ground
states are ferromagnetically ordered in
A=< —0.5. We use a transformed Hamiltonian

J
UIHU,= - ;]} (SiST+S8787—248:8%)
1,J

e=—38JRA+y)— 3 SJ{sink-e,—sink-e,+sink-(e;—ey)}.
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V37
—— > (S7S7—S78)), “4.7)
2 @&
where
H=J Y, (S7S;+87S8]+4S8:8), (4.8)
iy
and
27 27
U,=exp (i— S Si—i— >, S?). (4.9)
3 8 3 iec

It is shown by the transformation U, that spin
fluctuations become space-translational in-
variant and that a spin wave with the mode
k ~0 becomes dominant. The Hamiltonian is
expanded with the Holstein-Primakoff
transformation as

UIHU,=3NS*JA+Y ecd (k)a(k), (4.10)
k

where

The expectation value of the magnetization is given by

M=5-3; a'(k)a(k)>=8—-3)

In the region 4 < —0.5, spectra of the boson
behave as

38J

8k~T (—84—4+k?). (4.13)
A finite gap exists above the ground states.
The appearance of the energy gap comes from
the result that the ferromagnetic Ising interac-
tion is dominant in A4 < —0.5. In this region,
the ferromagnetic order is stable against the
spin-wave fluctuation. The magnetization can
be ordered at finite temperatures. As 4 is in-
creased, the energy gap decreases and it
vanishes at 4=—0.5. At 4= —0.5, the spec-
tra behave as

ee~——k*>.

" (4.14)

Then the deviation of the magnetization
becomes divergent as

(4.11)
_‘—‘1—‘—‘ 4.12
o exp (Be)—1 (4.12)
1
AM~' S — . .15)

— k

This divergence means that the magnetization
is unstable and there is no magnetic order.
This result is different from that of the
classical model.

At A=-0.5, the ground states are non-
trivially degenerate. It may be possible that a
scalar chiral-order phase appears at finite tem-
peratures by quantum effect in an intermediate
phase between the ferromagnetic phase and
vector-chiral one, since a scalar chiral order
appears in a part of the degenerate ground-
states. We calculate the free energy by ex-
panding from various ground states (2.17) to
determine which states are favorite at finite
temperatures. We use the Hamiltonian (2.1)
with 4= —0.5 and rotate the quantized axes
as
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U f J 2Qz X QX yQy

i j»

V3J

——5— 2, {cos (5787 —5757)=sin (87 S SIS)).

(Gad)]

(4.16)

With ¢ =0, the quantized axes are in the X Y plane and the system has the 120° structure. As ¢ is
increased, these axes close as bones of umbrella do. We expand the Hamiltonian (4.16) up to the

first order of 1/S as
' 2

- 3NJS
R'U'HUR=-—

where
gr=sink-e,—sin k-e,+sin k-(e;—e;). (4.18)

This Hamiltonian is already diagonalized. The
partition function of this system is given by

Z=Trexp (—fR' U 'HUR)

= i exp (—BHo) exp (—fB 2 exne),

ne=0 k
(4.19)
where 8=1/ks T and
3NJS?
0 =— , (4.20)
2
and
&=3JSA—y)+ V3 JSgisinp. (4.21)

The free energy of this system is given by
F=—-p"'1ogZ
=Ho+p7"' D log {1—exp (—Bex)}. (4.22)
k

Here we define the following function,

f(T)=Zk] log {1—exp (—Be0)}.  (4.23)
The values of f(T') at various temperatures are
shown in Fig. 3. The free energy of fer-
romagnetically ordered states which are fluc-
tuating around the ground state (2.17) with
¢=mn/2 is minimum at each temperature.
Thus scalar chiral order can not appear at
finite temperatures. Even a ferromagnetic
order can not appear as mentioned above.
As a conclusion we obtain the phase
diagram shown in Fig. 4 by taking into ac-
count all the above results and our previous

+S1{3JS(1—y)+ 3 JSgesin ¢} a' (k)a(k),
k

4.17)
0.00 T=0.1 (JS%/ky) —
—-0.02 - -
T=0.3 (J5%/kg)
a 0.04 -
= ’ T=0.5 (JS%/kg)
—0.06 - -
-0.08 |-
0 /4 - /2
Angle ¢
Fig. 3. Values of f(7') at various temperatures. These
values are calculated by expanding them from many
ground states (2.17) which have different values of
parameter ¢. A ground state with ¢ =0 has the 120°
structure and a state with ¢ =m/2 corresponds to the
ferromagnetically ordered state.
T T T
Disordered phase
1.0 4
“a
= L
~ -~ /_\
“;f) N\
= Ferro—\ N
0.5 magnetid l \ A
& phase \l " Chiral ordered phase \\
i \
| \
L L f \|
0.0
-1 -0.5 0 0.5 1

Fig. 4. Phase diagram of the chiral order which we
have predicted from the results of the SEFT, SW and
exact ground states. The solid-line comes from the
results of the SEFT. The dashed-line was predicted
from the results of the spin-wave expansion by exten-
ding the solid-line.
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results'® of the SEFT. We have extended the
phase boundary which was obtained previ-
ously from the results of the SEFT and have

drawn a line without quantitative accuracy,

since we have only discussed whether orders
are stable against spin-wave excitations or not
and we have not estimated the critical tempera-
tures.

§5. Summary and Discussion

In the present paper we have studied long-
range order in the quantum AFT XX Z model.
We showed exact ground states in the region
A=<-—0.5 and studied the ground-state and
thermal properties using the spin-wave theory.
Considering all the above results, we give the
phase diagram of the chiral order in the AFT
XXZ model.

For the case 4=—0.5, most of the exact
ground states have a chiral long-range order.
This model corresponds to one of the
marginal points of the chiral ordered phase.
These ground states are almost the same as
those of the corresponding classical model.
The sublattice-magnetization and the chirality
are fully ordered in these states. Using the
spin-wave theory, we studied ground-state
properties in the region —0.5<A4<1. As 4 is
increased, quantum effects are enhanced in the
ground states. Deviations of the sublattice-
magnetization become large, but the chirality
does not change depending on 4 near 4=0. In
the antiferromagnetic XY model, systems are
not so fluctuating with quantum effect. The
sublattice magnetization seems to be ordered
at ground states and the chirality seems to be
ordered even at finite temperatures. Near the
antiferromagnetic Heisenberg model, quan-
tum effects become strong. The values of the
magnetization and the chirality are reduced
rapidly by quantum fluctuation. Though the
estimated magnetization and chirality have
non-zero values in the Heisenberg model, the
A dependence of the magnetization and of the
chirality suggests that the Heisenberg model is
near the critical point.

Using the spin-wave theory, we have studied
the phase diagram at low temperatures and
have shown that the chiral order is stable
against spin-wave excitations in the region
—0.5<A4<1. In the case 4=-—0.5 the
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chirality is destroyed by long-range spin-wave
excitations. It is because the linear dispersion
relation &~ k| in the region —0.5<4<1
becomes of the form g, ~k? at A=—0.5. In
the case of 4 < —0.5, the ferromagnetic Ising
interaction is dominant. The dispersion rela-
tion has a mass gap as &~ m>+ k> However,
this gap vanishes at 4= —0.5. Then the fer-
romagnetic order exists at low temperatures in
the model with 4< —0.5 and a long-range
spin-wave breaks this order at 4= —0.5.

As mentioned above, quantum fluctuation
is strong in the model near the symmetry of
the Heisenberg model, say 4 ~1. Then it is
possible that the system is not ordered and
that the estimated values in the spin-wave ap-
proximation remain only apparently to be non-
vanishing in this region. There remains a
possibility for some differences between
classical systems and quantum ones in these
regions to appear.

We give a remark that there remains a
possibility that any order at finite tempera-
tures exists in the real system of the XXZ
model with 4= —0.5. Indeed, as shown in
§2, the Hamiltonian itself is not invariant with
any infinitesimal transformation which
changes the sign of the magnetization or the
chirality. As we showed in our previous paper,
the correlation of the chirality in finite clusters
is still strong at 4= —0.5. If an order exists at
finite temperatures, a ferromagnetic order
may exist and a reentrant transition may occur
in the same way as in a classical system, since
the free energy of the ferromagnetic phase is
lower than that of the chiral phase. To test
these possibilities, a more delicate study is
needed.

We did not argue the KT transition in this
paper. To study the relation between the KT
transition and the chiral order phase transition
is an interesting problem. To reveal the rela-
tion, any study from other approaches is
needed.
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