Deletion detection by mapping distance and read depth
In recent years, advancements in DNA genotyping technologies have produced increasingly detailed information on the genetic variants, known as single nucleotide polymorphisms (SNPs), implicated in susceptibility to common diseases. Such technologies, however, target only common variants, whose influence on susceptibility is limited, leaving unaddressed the role of rare or novel variants.
Results of the research group's study, published in the journal Nature Genetics, mark a key step toward clarifying this role. Using massively parallel sequencing technology, one of the most powerful tools for discovering genome-wide variation, the group analyzed the complete genome of a Japanese individual, the first time this has ever been done.
Using a Bayesian decision method, the group identified over 3 million single nucleotide variations (SNVs), the most abundant and important type of variants in the human genome. Comparing these results to the genomes of six individuals from countries around the world reported in earlier studies, the group found numerous SNVs with an influence on gene function that had been previously overlooked. The group also identified 3 million base pairs of novel sequence not present in reference data from the Human Genome Project.
As the first whole genome sequencing of a Japanese individual, the results offer valuable insights on disease susceptibility among Japanese people. They also highlight the rich diversity still remaining in the human genome, and the power of whole genome sequencing as a means to discovering it.