When carrying out bodily movements, motor cortex neurons fire before and during motion in a sequence corresponding to the phases of motor preparation, initiation and execution. The dynamics of the complex neural microcircuitry underlying these phases, however, is poorly understood, due to the technical difficulty involved in directly measuring neuron activity in a moving animal.
To overcome this difficulty, the researchers applied new techniques enabling them to record the firing activity and accurately determine the location and identity of individual neurons in the motor cortex of moving rats. Analyzing location and timing data, they were able to identify a key difference between neuron types: whereas excitatory pyramidal cells in all cortical layers fired during every phase of movement, fast-spiking (FS) interneurons, the most prevalent type of inhibitory neurons, fired only during motor execution.
These results suggest that FS interneurons, rather than functioning as a "gate" as typically conceived, act instead to shape and temporally sharpen motor commands via inhibition. While challenging conventional ideas on how cortical motor information is processed, this discovery also promises advancements in the treatment of brain damage and in the development of cutting-edge Brain Machine Interface (BMI) technology.